Citation: | Hiroyuki Usui, Yasuhiro Domi, Ryota Yamagami, Hiroki Sakaguchi. Degradation mechanism of tin phosphide as Na-ion battery negative electrode. Green Energy&Environment, 2019, 4(2): 121-126. doi: 10.1016/j.gee.2019.01.001 |
[1] |
M.Shimizu, H.Usui, K.Fujiwara, et al. J. Alloy. Compd., 640 (2015),pp. 440-443
|
[2] |
S.Komaba, W.Murata, T.Ishikawa, et al. Adv. Funct. Mater., 21 (2011),pp. 3859-3867
|
[3] |
M.Dahbi, T.Nakano, N.Yabuuchi, et al. Electrochem. Commun., 44 (2014),pp. 66-69
|
[4] |
M.Dahbi, M.Kiso, K.Kubota, et al. J. Mater. Chem. A, 5 (2017),pp. 9917-9928
|
[5] |
M.Shimizu, H.Usui, K.Yamane, et al. Int. J. Electrochem. Sci., 10 (2015),pp. 10132-10144
|
[6] |
M.Shimizu, H.Usui, H.Sakaguchi J. Power Sources, 248 (2014),pp. 378-382
|
[7] |
H.Usui, Y.Domi, S.Ohshima, et al. Electrochim. Acta, 246 (2017),pp. 280-284
|
[8] |
H.Usui, T.Sakata, M.Shimizu, et al. Electrochemistry, 83 (2015),pp. 810-812
|
[9] |
H.Usui, Y.Domi, K.Fujiwara, et al. ACS Energy Lett., 2 (2017),pp. 1139-1143
|
[10] |
H.Usui, Y.Domi, H.Nishida, et al. ChemistrySelect, 3 (2018),pp. 8462-8467
|
[11] |
H.Usui, Y.Domi, R.Yamagami, et al. ACS Appl. Energy Mater., 1 (2018),pp. 306-311
|
[12] |
Y.Xu, B.Peng, F.M.Mulder Adv. Energy Mater., 8 (2018),p. 1701847
|
[13] |
H.Sakaguchi, T.Toda, Y.Nagao, et al. Electrochem. Solid-State Lett., 10 (2007),p. J146−J149
|
[14] |
H.Usui, Y.Kiri, H.Sakaguchi Thin Solid Films, 520 (2012),pp. 7006-7010
|
[15] |
M.Dahbi, M.Fukunishi, T.Horiba, et al. J. Power Sources, 363 (2017),pp. 404-412
|
[16] |
L.D.Ellis, T.D.Hatchard, M.N.Obrovac J. Elecreochem. Soc., 159 (2012),pp. A1801-A1805
|
[17] |
Z.Du, R.A.Dunlap, M.N.Obrovac J. Alloy. Compd., 617 (2014),pp. 271-276
|
[18] |
M.Shimizu, Y.Tsushima, S.Arai ACS Omega, 2 (2017),pp. 4306-4315
|
[19] |
M.Mortazavi, Q.Ye, N.Birbilis, et al. J. Power Sources, 285 (2015),pp. 29-36
|
[20] |
L.E.Marbella, M.L.Evans, M.F.Groh, et al. J. Am. Chem. Soc., 140 (2018),pp. 7994-8004
|
[1] | Weijie Kou, Yafang Zhang, Wenjia Wu, Zibiao Guo, Quanxian Hua, Jingtao Wang. Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy&Environment, 2024, 9(1): 71-80. doi: 10.1016/j.gee.2022.05.002 |
[2] | Tianhao Li, Weihua Hu. Ionic liquid derived electrocatalysts for electrochemical water splitting. Green Energy&Environment, 2024, 9(4): 604-622. doi: 10.1016/j.gee.2023.06.004 |
[3] | Li Sun, Lujia Chai, Liangqi Jing, Yujuan Chen, Kelei Zhuo, Jianji Wang. 2,6-Diaminoanthraquinone modified MXene (Ti3C2Tx)/graphene as the negative electrode materials for ionic liquid-based asymmetric supercapacitors. Green Energy&Environment. doi: 10.1016/j.gee.2024.08.004 |
[4] | Hao Ouyang, Shan Min, Jin Yi, Xiaoyu Liu, Fanghua Ning, Jiaqian Qin, Yong Jiang, Bing Zhao, Jiujun Zhang. Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery. Green Energy&Environment, 2023, 8(4): 1195-1204. doi: 10.1016/j.gee.2022.01.014 |
[5] | Wending Pan, Yifei Wang, Holly Y. H. Kwok, Dennis Y. C. Leung. Aluminum-air battery with cotton substrate: Controlling the discharge capacity by electrolyte pre-deposition. Green Energy&Environment, 2023, 8(3): 757-766. doi: 10.1016/j.gee.2021.05.003 |
[6] | Yifei Wang, Wending Pan, Kee Wah Leong, Shijing Luo, Xiaolong Zhao, Dennis Y.C. Leung. Solid-state Al-air battery with an ethanol gel electrolyte. Green Energy&Environment, 2023, 8(4): 1117-1127. doi: 10.1016/j.gee.2021.05.011 |
[7] | Yifei Wang, Wending Pan, Kee Wah Leong, Yingguang Zhang, Xiaolong Zhao, Shijing Luo, Dennis Y. C. Leung. Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy&Environment, 2023, 8(5): 1380-1388. doi: 10.1016/j.gee.2021.10.001 |
[8] | Xin Liu, Liwen Yang, Guobao Xu, Juexian Cao. Pomegranate-like porous NiCo2Se4 spheres with N-doped carbon as advanced anode materials for Li/Na-ion batteries. Green Energy&Environment, 2022, 7(3): 554-565. doi: 10.1016/j.gee.2020.08.012 |
[9] | Huiqin Wang, Fengchu Zhang, Jing Xia, Fei Lu, Bo Zhou, Ding Yi, Xi Wang. Engineering electronic structures of titanium vacancies in Ti1-xO2 nanosheets enables enhanced Li-ion and Na-ion storage. Green Energy&Environment, 2022, 7(4): 734-741. doi: 10.1016/j.gee.2020.11.006 |
[10] | Mei-Yi Wang, Xin-Xin Zhao, Jin-Zhi Guo, Xue-Jiao Nie, Zhen-Yi Gu, Xu Yang, Xing-Long Wu. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3-x(P2O7)x cathode material. Green Energy&Environment, 2022, 7(4): 763-771. doi: 10.1016/j.gee.2020.11.026 |
[11] | Linlin Fan, Zhiqiang Shi, Qingjuan Ren, Lei Yan, Fuming Zhang, Liping Fan. Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy&Environment, 2021, 6(2): 220-228. doi: 10.1016/j.gee.2020.06.005 |
[12] | Zhenyu Wu, Jing Luo, Jiao Peng, Hong Liu, Baobao Chang, Xianyou Wang. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery. Green Energy&Environment, 2021, 6(4): 517-527. doi: 10.1016/j.gee.2020.06.009 |
[13] | Haiying Che, Xinrong Yang, Yan Yu, Chaoliang Pan, Hong Wang, Yonghong Deng, Linsen Li, Zi-Feng Ma. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy&Environment, 2021, 6(2): 212-219. doi: 10.1016/j.gee.2020.04.007 |
[14] | Jianji Wang. Innovating ionic liquids as repairable electronics for liquid robots. Green Energy&Environment, 2020, 5(2): 122-123. doi: 10.1016/j.gee.2020.04.005 |
[15] | Xiaohong Wu, Kecheng Pan, Mengmin Jia, Yufei Ren, Hongyan He, Lan Zhang, Suojiang Zhang. Electrolyte for lithium protection: From liquid to solid. Green Energy&Environment, 2019, 4(4): 360-374. doi: 10.1016/j.gee.2019.05.003 |
[16] | Linqin Mu, Yaxiang Lu, Xiaoyan Wu, Yuejun Ding, Yong-Sheng Hu, Hong Li, Liquan Chen, Xuejie Huang. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy&Environment, 2018, 3(1): 63-70. doi: 10.1016/j.gee.2017.09.002 |
[17] | Weina Ren, Haifeng Zhang, Cao Guan, Chuanwei Cheng. SnS2 nanosheets arrays sandwiched by N-doped carbon and TiO2 for high-performance Na-ion storage. Green Energy&Environment, 2018, 3(1): 42-49. doi: 10.1016/j.gee.2017.09.005 |
[18] | Feng Wu, Na Zhu, Ying Bai, Yaning Gao, Chuan Wu. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green Energy&Environment, 2018, 3(1): 71-77. doi: 10.1016/j.gee.2017.10.002 |
[19] | Xuan Wu, Jie Xu, George Y. Chen, Rong Fan, Xiaokong Liu, Haolan Xu. Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh. Green Energy&Environment, 2017, 2(4): 387-392. doi: 10.1016/j.gee.2017.02.002 |
[20] | Junfeng Wang, Jianquan Luo, Shicao Feng, Haoran Li, Yinhua Wan, Xiangping Zhang. Recent development of ionic liquid membranes. Green Energy&Environment, 2016, 1(1): 43-61. doi: 10.1016/j.gee.2016.05.002 |
1. | Ge, P., Yuan, S., Zou, G. et al. Anode materials of sodium-ion batteries. Sodium-Ion Batteries: Technologies and Applications, 2023. doi:10.1002/9783527841684.ch4 | |
2. | Thangaraj, B., Solomon, P.R., Hassan, J. Nanocarbon in Sodium-ion Batteries – A Review. Part 2: One, Two, and Three-dimensional Nanocarbons. ChemBioEng Reviews, 2023, 10(5): 647-669. doi:10.1002/cben.202200039 | |
3. | Zhu, L., Li, Y., Zhao, J. et al. Recent advanced development of stabilizing sodium metal anodes. Green Energy and Environment, 2023, 8(5): 1279-1307. doi:10.1016/j.gee.2022.06.010 | |
4. | Fan, W., Gao, Y., Hui, Q. et al. A closed-ended MXene armor on hollow Sn4P3 nanospheres for ultrahigh-rate and stable sodium storage. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2023.142963 | |
5. | Usui, H., Domi, Y., Sakaguchi, H. Rutile TiO2 Creates Advanced Na-Storage Materials. ACS Applied Energy Materials, 2023, 6(8): 4089-4102. doi:10.1021/acsaem.3c00266 | |
6. | Wang, M., Liu, Q., Wu, G. et al. Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green Energy and Environment, 2023, 8(2): 548-558. doi:10.1016/j.gee.2021.03.007 | |
7. | [No author name available]. Latest Trends in Anode Materials Using Phosphorus Compounds for Sodium Ion Batteries | [リン化合物を用いたナトリウムイオン電池負極材料の最新動向]. Denki Kagaku, 2023, 91(4): 377-381. doi:10.5796/denkikagaku.23-FE0026 | |
8. | Kaushik, S., Matsumoto, K., Hagiwara, R. Electrochemical Investigation of Spherical Hard Carbon Negative Electrodes for Sodium Secondary Batteries. Electrochemistry, 2023, 91(1): 017003. doi:10.5796/electrochemistry.22-00126 | |
9. | Paredes, I.J., Ebrahim, A.M., Yanagi, R. et al. Synthesis and elucidation of local structure in phase-controlled colloidal tin phosphide nanocrystals from aminophosphines. Materials Advances, 2022, 4(1): 171-183. doi:10.1039/d2ma00010e | |
10. | De Vasconcelos, L.S., Xu, R., Xu, Z. et al. Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122(15): 13043-13107. doi:10.1021/acs.chemrev.2c00002 | |
11. | Zou, Y., Tang, A., Shang, C. et al. Preparation and electrochemical properties of NaZnV2(PO4)3/C as anodes for sodium-ion batteries. Materials Letters, 2022. doi:10.1016/j.matlet.2022.132216 | |
12. | Chen, F., Xu, J., Wang, S. et al. Phosphorus/Phosphide-Based Materials for Alkali Metal-Ion Batteries. Advanced Science, 2022, 9(17): 2200740. doi:10.1002/advs.202200740 | |
13. | Gómez-Cámer, J.L., Ruiz De Larramendi, I., Enterría, M. et al. Alternative anodes for Na-O2batteries: The case of the Sn4P3alloy. Journal of Materials Chemistry A, 2022, 10(5): 2398-2411. doi:10.1039/d1ta07096g | |
14. | Usui, H., Chiku, M., Shin-Ichi, Y. et al. Electrochemical Polarization Part 2: Electrochemical Devices†. Electrochemistry, 2022, 90(10): 2266086. doi:10.5796/electrochemistry.22-66086 | |
15. | Zhang, W., Liu, T., Wang, Y. et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy, 2021. doi:10.1016/j.nanoen.2021.106475 | |
16. | Ye, S., Wang, L., Liu, F. et al. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode. eScience, 2021, 1(1): 75-82. doi:10.1016/j.esci.2021.09.003 | |
17. | Sun, S., Wang, W., Kong, F. et al. Application and prospective of Sn-P based anodes for alkali-ion batteries. Energy Storage Materials, 2021. doi:10.1016/j.ensm.2021.05.021 | |
18. | Usui, H., Domi, Y., Takada, N. et al. Reaction Mechanism of Indium Antimonide as a Sodium Storage Material. Crystal Growth and Design, 2021, 21(1): 218-226. doi:10.1021/acs.cgd.0c01045 | |
19. | Zhang, Q., Xu, Y., Qiu, L. et al. Novel design and synthesis of 1D bamboo-like CNTs@Sn4P3@C coaxial nanotubes for long-term sodium ion storage. Green Energy and Environment, 2021. doi:10.1016/j.gee.2021.01.013 | |
20. | Ran, L., Gentle, I., Lin, T. et al. Sn4P3@Porous carbon nanofiber as a self-supported anode for sodium-ion batteries. Journal of Power Sources, 2020. doi:10.1016/j.jpowsour.2020.228116 |