Hiroyuki Usui, Yasuhiro Domi, Ryota Yamagami, Hiroki Sakaguchi. Degradation mechanism of tin phosphide as Na-ion battery negative electrode. Green Energy&Environment, 2019, 4(2): 121-126. doi: 10.1016/j.gee.2019.01.001
Citation: Hiroyuki Usui, Yasuhiro Domi, Ryota Yamagami, Hiroki Sakaguchi. Degradation mechanism of tin phosphide as Na-ion battery negative electrode. Green Energy&Environment, 2019, 4(2): 121-126. doi: 10.1016/j.gee.2019.01.001

Degradation mechanism of tin phosphide as Na-ion battery negative electrode

doi: 10.1016/j.gee.2019.01.001
  • The degradation mechanism of an Sn4P3 electrode as Na-ion battery anode was investigated by using a transmission electron microscopic observation. At the first desodiation, we confirmed that Sn nanoparticles with 6 nm in size were dispersed in an amorphous-like P matrix. Compared to this, we observed aggregated Sn particles with sizes exceeding 50 nm after the drastic capacity fading. The capacity fading mechanism was for the first time confirmed to be Sn aggregation. To improve the capacity decay, we carried out the two kinds of charge−discharge cycling tests under the reduced volume changes of Sn particles and P matrix by limiting desodiation reactions of NaSn and Na3P, respectively. The Sn4P3 electrode exhibited an excellent cyclability with the discharge capacity of 500 mA h g−1 for 420 cycles under the limited desodiation, whereas the capacity decay was accelerated under the limited sodiation. The results suggest that the Sn aggregation can be improved by the reduced volume change of the P matrix, and that it is very effective for improving anode performance of Sn4P3 electrode.

     

  • loading
  • [1]
    M.Shimizu, H.Usui, K.Fujiwara, et al. J. Alloy. Compd., 640 (2015),pp. 440-443
    [2]
    S.Komaba, W.Murata, T.Ishikawa, et al. Adv. Funct. Mater., 21 (2011),pp. 3859-3867
    [3]
    M.Dahbi, T.Nakano, N.Yabuuchi, et al. Electrochem. Commun., 44 (2014),pp. 66-69
    [4]
    M.Dahbi, M.Kiso, K.Kubota, et al. J. Mater. Chem. A, 5 (2017),pp. 9917-9928
    [5]
    M.Shimizu, H.Usui, K.Yamane, et al. Int. J. Electrochem. Sci., 10 (2015),pp. 10132-10144
    [6]
    M.Shimizu, H.Usui, H.Sakaguchi J. Power Sources, 248 (2014),pp. 378-382
    [7]
    H.Usui, Y.Domi, S.Ohshima, et al. Electrochim. Acta, 246 (2017),pp. 280-284
    [8]
    H.Usui, T.Sakata, M.Shimizu, et al. Electrochemistry, 83 (2015),pp. 810-812
    [9]
    H.Usui, Y.Domi, K.Fujiwara, et al. ACS Energy Lett., 2 (2017),pp. 1139-1143
    [10]
    H.Usui, Y.Domi, H.Nishida, et al. ChemistrySelect, 3 (2018),pp. 8462-8467
    [11]
    H.Usui, Y.Domi, R.Yamagami, et al. ACS Appl. Energy Mater., 1 (2018),pp. 306-311
    [12]
    Y.Xu, B.Peng, F.M.Mulder Adv. Energy Mater., 8 (2018),p. 1701847
    [13]
    H.Sakaguchi, T.Toda, Y.Nagao, et al. Electrochem. Solid-State Lett., 10 (2007),p. J146−J149
    [14]
    H.Usui, Y.Kiri, H.Sakaguchi Thin Solid Films, 520 (2012),pp. 7006-7010
    [15]
    M.Dahbi, M.Fukunishi, T.Horiba, et al. J. Power Sources, 363 (2017),pp. 404-412
    [16]
    L.D.Ellis, T.D.Hatchard, M.N.Obrovac J. Elecreochem. Soc., 159 (2012),pp. A1801-A1805
    [17]
    Z.Du, R.A.Dunlap, M.N.Obrovac J. Alloy. Compd., 617 (2014),pp. 271-276
    [18]
    M.Shimizu, Y.Tsushima, S.Arai ACS Omega, 2 (2017),pp. 4306-4315
    [19]
    M.Mortazavi, Q.Ye, N.Birbilis, et al. J. Power Sources, 285 (2015),pp. 29-36
    [20]
    L.E.Marbella, M.L.Evans, M.F.Groh, et al. J. Am. Chem. Soc., 140 (2018),pp. 7994-8004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return