Huaifang Zhang, Jubing Zhang, Kunhao Liu, Yunqi Zhu, Xiaoyu Qiu, Dongmei Sun, Yawen Tang. Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction. Green Energy&Environment, 2019, 4(3): 245-253. doi: 10.1016/j.gee.2018.12.002
Citation: Huaifang Zhang, Jubing Zhang, Kunhao Liu, Yunqi Zhu, Xiaoyu Qiu, Dongmei Sun, Yawen Tang. Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction. Green Energy&Environment, 2019, 4(3): 245-253. doi: 10.1016/j.gee.2018.12.002

Construction of highly-stable graphene hollow nanospheres and their application in supporting Pt as effective catalysts for oxygen reduction reaction

doi: 10.1016/j.gee.2018.12.002
  • The construction and surface modification of three-dimensional (3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The as-prepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles (3D r-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile, dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C.

     

  • Huaifang Zhang and Jubing Zhang contributed equally to this work.
  • loading
  • [1]
    M.S.Ahmed, Y.B.Kim Sci. Rep., 7 (2017)
    [2]
    Y.Han, Y.G.Wang, W.Chen, et al. J. Am. Chem. Soc., 139 (2017),pp. 17269-17272
    [3]
    Z.Yan, L.Gao, C.Dai, et al. Int. J. Hydrogen Energy, 43 (2018),pp. 3705-3715
    [4]
    T.Oh, M.Kim, D.Park, et al. Appl. Surf. Sci., 440 (2018),pp. 627-636
    [5]
    Q.Xue, J.Bai, C.Han, et al. ACS Catal., 8 (2018),pp. 11287-11295
    [6]
    Z.Li, Z.Liu, B.Li, et al. Electrochim. Acta, 221 (2016),pp. 31-40
    [7]
    G.L.Chai, M.Boero, Z.Hou, et al. ACS Catal., 7 (2017),pp. 7908-7916
    [8]
    J.Wang, Z.Huang, W.Liu, et al. J. Am. Chem. Soc., 139 (2017),pp. 17281-17284
    [9]
    C.Zhang, J.Sha, H.Fei, et al. ACS Nano, 11 (2017),pp. 6930-6941
    [10]
    Y.L.Liu, X.Y.Xu, P.C.Sun, et al. Int. J. Hydrogen Energy, 40 (2015),pp. 4531-4539
    [11]
    K.Jukk, N.Kongi, P.Rauwel, et al. Electrocatalysis, 7 (2016),pp. 428-440
    [12]
    Q.Shi, C.Zhu, M.H.Engelhard, et al. RSC Adv., 7 (2017),pp. 6303-6308
    [13]
    J.Ying, J.Li, G.Jiang, et al. Appl. Catal. B Environ., 225 (2018),pp. 496-503
    [14]
    Y.Li, Y.Li, E.Zhu, et al. J. Am. Chem. Soc., 134 (2012),pp. 12326-12329
    [15]
    S.Yasmin, S.Cho, S.Jeon Appl. Surf. Sci., 434 (2018),pp. 905-912
    [16]
    S.Fu, C.Zhu, J.Song, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 35213-35218
    [17]
    G.R.Xu, B.Wang, J.Y.Zhu, et al. ACS Catal., 6 (2016),pp. 5260-5267
    [18]
    Q.Xue, G.Xu, R.Mao, et al. J. Energy Chem., 26 (2017),pp. 1153-1159
    [19]
    H.M.Liu, S.H.Han, Y.Y.Zhu, et al. Green Eneryg Environ., 3 (2018),pp. 375-383
    [20]
    J.N.Tiwari, K.Nath, S.Kumar, et al. Nat. Commun., 4 (2013)
    [21]
    M.Li, Q.Jiang, M.Yan, et al. ACS Sustain. Chem. Eng., 6 (2018),pp. 6644-6653
    [22]
    J.Sanetuntikul, T.Hang, S.Shanmugam Chem. Commun., 50 (2014),pp. 9473-9476
    [23]
    X.Zhong, L.Liu, Y.Jiang, et al. ChemCatChem, 7 (2015),pp. 1826-1832
    [24]
    K.Qiu, G.Chai, C.Jiang, et al. ACS Catal., 6 (2016),pp. 3558-3568
    [25]
    F.Xu, R.Chen, Z.Lin, et al. ACS Omega, 3 (2018),pp. 3599-3607
    [26]
    W.Ahn, D.U.Lee, G.Li, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 25297-25305
    [27]
    X.Qiu, T.Li, S.Deng, et al. Chem. Eur J., 24 (2018),pp. 1246-1252
    [28]
    X.Qiu, X.Yan, K.Cen, et al. ACS Appl. Energy Mater., 1 (2018),pp. 2341-2349
    [29]
    L.Zhao, X.L.Sui, J.L.Li, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 16026-16034
    [30]
    G.Zhou, Y.Zhao, A.Manthiram Adv. Energy Mater., 5 (2015)
    [31]
    X.Qiu, H.Zhang, Y.Dai, et al. Catalysts, 5 (2015),pp. 992-1002
    [32]
    W.Huang, S.Ding, Y.Chen, et al. Sci. Rep., 7 (2017)
    [33]
    Y.Wu, Q.Shi, Y.Li, et al. J. Mater. Chem. A, 3 (2015),pp. 1142-1151
    [34]
    D.Novitski, S.Holdcroft ACS Appl. Mater. Interfaces, 7 (2015),pp. 27314-27323
    [35]
    V.Chabot, D.Higgins, A.Yu, et al. Energy Environ. Sci., 7 (2014),pp. 1564-1596
    [36]
    C.K.Chua, M.Pumera Chem. Soc. Rev., 43 (2014),pp. 291-312
    [37]
    J.S.Lee, J.C.Yoon, J.H.Jang J. Mater. Chem. A, 1 (2013),pp. 7312-7315
    [38]
    Z.Tang, Z.Zhang, Z.Han, et al. J. Mater. Sci., 51 (2016),pp. 8791-8798
    [39]
    W.Stöber, A.Fink, E.Bohn J. Colloid Interface Sci., 26 (1968),pp. 62-69
    [40]
    X.Qiu, Y.Dai, X.Zhu, et al. J. Power Sources, 302 (2016),pp. 195-201
    [41]
    X.Qiu, P.Wu, L.Xu, et al. Adv. Mater. Interfaces, 2 (2015)
    [42]
    Y.Chen, G.Fu, Y.Li, et al. J. Mater. Chem. A, 5 (2017),pp. 3774-3779
    [43]
    B.Fang, B.A.Pinaud, D.P.Wilkinson Electrocatalysis, 7 (2016),pp. 336-344
    [44]
    Z.Zhang, T.Sun, C.Chen, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 21035-21040
    [45]
    M.S.Dresselhaus, A.Jorio, M.Hofmann, et al. Nano Lett., 10 (2010),pp. 751-758
    [46]
    B.Liu, L.Huo, G.Zhang, et al. Electrochim. Acta, 213 (2016),pp. 771-782
    [47]
    Q.Yu, J.Xu, C.Wu, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 35264-35269
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return