Zhen Song, Xinxin Li, He Chao, Fan Mo, Teng Zhou, Hongye Cheng, Lifang Chen, Zhiwen Qi. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy&Environment, 2019, 4(2): 154-165. doi: 10.1016/j.gee.2018.12.001
Citation: Zhen Song, Xinxin Li, He Chao, Fan Mo, Teng Zhou, Hongye Cheng, Lifang Chen, Zhiwen Qi. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy&Environment, 2019, 4(2): 154-165. doi: 10.1016/j.gee.2018.12.001

Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process

doi: 10.1016/j.gee.2018.12.001
  • A computer-aided ionic liquid design (CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UNIFAC-IL model for this system, where the proximity effect in alkanes and cycloalkanes is considered specifically by defining distinct groups. The thermodynamic performances of a large number of ILs for 4 different alkane/cycloalkane systems are then compared to select a representative example of such separations. By applying n-heptane/methylcyclohexane extractive distillation as a case study, the CAILD task is cast as a mixed-integer nonlinear programming (MINLP) problem based on the obtained task-specific UNIFAC-IL model and two semi-empirical models for IL physical properties. The top 5 IL candidates determined by solving the MINLP problem are subsequently introduced into Aspen Plus for process simulation and economic analysis, which finally identify 1-hexadecyl-methylpiperidinium tricyanomethane ([C16MPip][C(CN)3]) as the best entrainer for this separation.

     

  • loading
  • [1]
    Z.G.Lei, C.Dai, J.Zhu, et al. AIChE J., 60 (2014),pp. 3312-3329
    [2]
    E.Quijada-Maldonado, G.W.Meindersma, A.B.de Haan Separ. Purif. Technol., 166 (2016),pp. 196-204
    [3]
    H.Chao, Z.Song, H.Cheng, et al. Separ. Purif. Technol., 196 (2018),pp. 157-165
    [4]
    M.J.Earle, K.R.Seddon Pure Appl. Chem., 72 (2000),pp. 1391-1398
    [5]
    S.P.Ventura, F.A.e Silva, M.V.Quental, et al. Chem. Rev., 117 (2017),pp. 6984-7052
    [6]
    Q.Li, J.Zhang, Z.G.Lei, et al. Ind. Eng. Chem. Res., 48 (2009),pp. 9006-9012
    [7]
    I.Díaz, J.Palomar, M.Rodríguez, et al. Chem. Eng. Res. Des., 115 (2016),pp. 382-393
    [8]
    M.Stuckenholz, E.A.Crespo, L.F.Vega, et al. J. Phys. Chem. B, 122 (2018),pp. 6017-6032
    [9]
    Z.Song, T.Zhou, J.Zhang, et al. Chem. Eng. Sci., 129 (2015),pp. 69-77
    [10]
    M.A.Martins, U.Domańska, B.Schröder, et al. ACS Sustain. Chem. Eng., 4 (2015),pp. 548-556
    [11]
    A.Mehrkesh, A.T.Karunanithi Comput. Chem. Eng., 93 (2016),pp. 402-412
    [12]
    J.Xin, D.Yan, R.Cao, et al. Green Energy Environ., 1 (2016),pp. 144-148
    [13]
    S.Ren, Y.Hou, K.Zhang, et al. Green Energy Environ., 3 (2018),pp. 179-190
    [14]
    Z.Song, J.Zhang, Q.Zeng, et al. Fluid Phase Equilibr., 425 (2016),pp. 244-251
    [15]
    U.Domańska, K.Paduszyński, M.Królikowski, et al. Ind. Eng. Chem. Res., 55 (2016),pp. 5736-5747
    [16]
    Z.Song, D.Yu, Q.Zeng, et al. Chin. J. Chem. Eng., 25 (2017),pp. 159-165
    [17]
    R.Anantharaj, T.Banerjee AIChE J., 57 (2011),pp. 749-764
    [18]
    K.Paduszynski, E.V.Lukoshko, M.Królikowski, et al. J. Phys. Chem. B, 119 (2015),pp. 543-551
    [19]
    F.Eckert, A.Klamt AIChE J., 48 (2002),pp. 369-385
    [20]
    Z.Song, Q.Zeng, J.Zhang, et al. J. Mol. Liq., 224 (2016),pp. 544-550
    [21]
    J.Zhang, D.Peng, Z.Song, et al. Chem. Eng. Sci., 162 (2017),pp. 355-363
    [22]
    Z.Song, T.Zhou, Z.W.Qi, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 3382-3389
    [23]
    J.Han, C.Dai, G.Yu, et al. Green Energy Environ., 3 (2018),pp. 247-265
    [24]
    Z.G.Lei, J.Zhang, Q.Li, et al. Ind. Eng. Chem. Res., 48 (2009),pp. 2697-2704
    [25]
    Z.G.Lei, C.Dai, X.Liu, et al. Ind. Eng. Chem. Res., 51 (2012),pp. 12135-12144
    [26]
    B.C.Roughton, B.Christian, J.White, et al. Comput. Chem. Eng., 42 (2012),pp. 248-262
    [27]
    G.Yu, C.Dai, Z.G.Lei Ind. Eng. Chem. Res., 57 (2018),pp. 7064-7076
    [28]
    Z.Song, C.Zhang, Z.W.Qi, et al. AIChE J., 64 (2018),pp. 1013-1025
    [29]
    R.Gani, E.A.Brignole Fluid Phase Equilibr., 13 (1983),pp. 331-340
    [30]
    A.Fredenslund
    [31]
    L.Y.Ng, F.K.Chong, N.G.Chemmangattuvalappil Comput. Chem. Eng., 81 (2015),pp. 115-129
    [32]
    L.Zhang, D.K.Babi, R.Gani Annu. Rev. Chem. Biomol. Eng., 7 (2016),pp. 557-582
    [33]
    A.T.Karunanithi, A.Mehrkesh AIChE J., 59 (2013),pp. 4627-4640
    [34]
    L.M.Chávez-Islas, R.Vasquez-Medrano, A.Flores-Tlacuahuac Ind. Eng. Chem. Res., 50 (2011),pp. 5153-5168
    [35]
    F.K.Chong, F.T.Eljack, M.Atilhan, et al. Comput. Chem. Eng., 91 (2016),pp. 219-232
    [36]
    L.Achenie, V.Venkatasubramanian, R.Gani
    [37]
    K.Paduszyński Phys. Chem. Chem. Phys., 19 (2017),pp. 11835-11850
    [38]
    J.P.Gutiérrez, G.W.Meindersma, A.B.de Haan Ind. Eng. Chem. Res., 51 (2012),pp. 11518-11529
    [39]
    J.A.Lazzús Fluid Phase Equilibr., 313 (2012),pp. 1-6
    [40]
    K.Paduszyński, U.Domańska J. Chem. Inf. Model., 54 (2014),pp. 1311-1324
    [41]
    M.Larriba, J.de Riva, P.Navarro, et al. Separ. Purif. Technol., 190 (2018),pp. 211-227
    [42]
    Y.Huang, H.Dong, X.P.Zhang, et al. AIChE J., 59 (2013),pp. 1348-1359
    [43]
    W.L.Luyben
    [44]
    G.W.Meindersma, A.R.Hansmeier, A.B.de Haan Ind. Eng. Chem. Res., 49 (2010),pp. 7530-7540
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return