Xingling Zhao, Kai Wu, Weiping Liao, Yingxiong Wang, Xiaoning Hou, Mingshan Jin, Zhanghuai Suo, Hui Ge. Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol. Green Energy&Environment, 2019, 4(3): 300-310. doi: 10.1016/j.gee.2018.11.002
Citation: Xingling Zhao, Kai Wu, Weiping Liao, Yingxiong Wang, Xiaoning Hou, Mingshan Jin, Zhanghuai Suo, Hui Ge. Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol. Green Energy&Environment, 2019, 4(3): 300-310. doi: 10.1016/j.gee.2018.11.002

Improvement of low temperature activity and stability of Ni catalysts with addition of Pt for hydrogen production via steam reforming of ethylene glycol

doi: 10.1016/j.gee.2018.11.002
  • Hydrogen production by steam reforming of ethylene glycol (EG) at 300 °C was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C—C bond rupture and water gas shift reactions; and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.

     

  • loading
  • [1]
    L.Lin, W.Zhou, R.Gao, et al. Nature, 544 (2017),pp. 80-83
    [2]
    J.D.Holladay, J.Hu, D.L.King, et al. Catal. Today, 139 (2009),pp. 244-260
    [3]
    A.Tanksale, J.N.Beltramini, G.M.Lu Renew. Sustain. Energy Rev., 14 (2010),pp. 166-182
    [4]
    H.Zhang, H.Jiang, Y.Hu, et al. Green Energy Environ., 2 (2017),pp. 112-118
    [5]
    C.Liu, Z.Zhang, W.Liu, et al. Green Energy Environ., 2 (2017),pp. 436-441
    [6]
    A.Seretis, P.Tsiakaras Fuel Process. Technol., 142 (2016),pp. 135-146
    [7]
    L.A.Dosso, C.R.Vera, J.M.Grau Int. J. Hydrogen Energy, 42 (2017),pp. 18853-18864
    [8]
    S.Jeon, Y.M.Park, K.Saravanan, et al. Int. J. Hydrogen Energy, 42 (2017),pp. 9892-9902
    [9]
    D.Li, X.Li, J.Gong Chem. Rev., 116 (2016),pp. 11529-11653
    [10]
    H.Yue, Y.Zhao, X.Ma, et al. Chem. Soc. Rev., 41 (2012),pp. 4218-4244
    [11]
    M.-Y.Zheng, A.-Q.Wang, N.Ji, et al. ChemSusChem, 3 (2010),pp. 63-66
    [12]
    D.J.M.de Vlieger, A.G.Chakinala, L.Lefferts, et al. Appl. Catal. B: Environ., 111–112 (2012),pp. 536-544
    [13]
    U.Izquierdo, M.Wichert, V.L.Barrio, et al. Appl. Catal. B: Environ., 152–153 (2014),pp. 19-27
    [14]
    X.-L.Zhao, Y.-A.LÜ, W.-P.Liao, et al. J. Fuel Chem. Technol., 43 (2015),pp. 581-588
    [15]
    S.Li, C.Zhang, P.Zhang, et al. Phys. Chem. Chem. Phys., 14 (2012),pp. 4066-4069
    [16]
    F.Pompeo, G.F.Santori, N.N.Nichio Catal. Today, 172 (2011),pp. 183-188
    [17]
    E.A.Sanchez, R.A.Comelli Int. J. Hydrogen Energy, 39 (2014),pp. 8650-8655
    [18]
    S.A.Tupy, J.G.Chen, D.G.Vlachos Top. Catal., 56 (2013),pp. 1644-1650
    [19]
    F.Seyedeyn-Azad, E.Salehi, J.Abedi, et al. Fuel Process. Technol., 92 (2011),pp. 563-569
    [20]
    Y.-A.Lü, X.-L.Zhao, Z.-H.Suo, et al. J. Fuel Chem. Technol., 43 (2015),pp. 684-691
    [21]
    J.Vicente, C.Montero, J.Ereña, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 12586-12596
    [22]
    F.Liu, L.Zhao, H.Wang, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 10454-10466
    [23]
    U.Izquierdo, M.Wichert, G.Kolb, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 5248-5256
    [24]
    L.P.R.Profeti, E.A.Ticianelli, E.M.Assaf Int. J. Hydrogen Energy, 34 (2009),pp. 5049-5060
    [25]
    X.Han, Y.Yu, H.He, et al. J. Power Sources, 238 (2013),pp. 57-64
    [26]
    M.El Doukkali, A.Iriondo, P.L.Arias, et al. Int. J. Hydrogen Energy, 37 (2012),pp. 8298-8309
    [27]
    T.S.Moraes, R.C.R.Neto, M.C.Ribeiro, et al. Catal. Today, 242 (2015),pp. 35-49
    [28]
    R.M.Navarro, R.Guil-Lopez, A.A.Ismail, et al. Catal. Today, 242 (2015),pp. 60-70
    [29]
    L.Zhou, Y.Guo, H.Kameyama, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 7291-7305
    [30]
    Y.Zhang, W.Wang, Z.Wang, et al. Catal. Today, 256 (2015),pp. 130-136
    [31]
    W.Xu, Z.Liu, A.C.Johnston-Peck, et al. ACS Catal., 3 (2013),pp. 975-984
    [32]
    H.-D.Kim, H.J.Park, T.-W.Kim, et al. Int. J. Hydrogen Energy, 37 (2012),pp. 8310-8317
    [33]
    N.Wang, N.Perret, A.Foster Int. J. Hydrogen Energy, 36 (2011),pp. 5932-5940
    [34]
    B.Pawelec, S.Damyanova, K.Arishtirova, et al. Appl. Catal. A: Gen., 323 (2007),pp. 188-201
    [35]
    V.Palma, C.Ruocco, F.Castaldo, et al. Int. J. Hydrogen Energy, 40 (2015),pp. 12650-12662
    [36]
    M.García-Diéguez, E.Finocchio, M.Á.Larrubia, et al. J. Catal., 274 (2010),pp. 11-20
    [37]
    Q.Yu, W.Chen, Y.Li, et al. Catal. Today, 158 (2010),pp. 324-328
    [38]
    Z.Mei, Y.Li, M.Fan, et al. Chem. Eng. J., 259 (2015),pp. 293-302
    [39]
    R.Takahashi, S.Sato, T.Sodesawa, et al. Appl. Catal. A: Gen., 273 (2004),pp. 211-215
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return