Wangchen Huo, Tong Cao, Xiaoying Liu, Weina Xu, Biqin Dong, Yuxin Zhang, Fan Dong. Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove. Green Energy&Environment, 2019, 4(3): 270-277. doi: 10.1016/j.gee.2018.11.001
Citation: Wangchen Huo, Tong Cao, Xiaoying Liu, Weina Xu, Biqin Dong, Yuxin Zhang, Fan Dong. Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove. Green Energy&Environment, 2019, 4(3): 270-277. doi: 10.1016/j.gee.2018.11.001

Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove

doi: 10.1016/j.gee.2018.11.001
  • Due to the easily controllable interlayer anions, metal cation composition proportion and thickness, which is beneficial to modify surface chemical state and tune bandgap, layered double hydroxides (LDHs) have great promising potential for photocatalytic applications. In this study, we have successfully synthesized the ZnAl–LDH intercalated the single anion between ZnAl cationic interlayer without anionic impurities by using a facile calcining and reconstructing routes. The electron structure and surface chemical state of the prepared products have been investigated by combining the DFT calculation and experimental characterization methods. UV–vis DRS was used to certify the light absorption of the prepared products, and we performed the DFT calculation to demonstrate the density of state and activation of reactant. These results suggested that the ZnAl–LDH–CO3 possessed the more proper band structure and superior ability to activate NO and O2 for accelerating the photocatalytic NO oxidation activity. Moreover, the in situ DRIFTS with dynamically monitoring intermediates and products over the ZnAl–LDH–CO3 was adopted to declare the photocatalytic NO oxidized process during the photocatalytic reaction process. This work illustrated the influence of different interlayer anions to the electron structure and surface chemical state of ZnAl–LDH structure through the experimental verification combined DFT calculation and the photocatalytic NO oxidized process viain situ DRIFTS analyzing, which would provide a novel way to design and fabricate the efficient photocatalysis, and understand the reaction process.

     

  • loading
  • [1]
    H.Li, H.Shang, X.Cao, et al. Environ. Sci. Technol., 52 (2018),pp. 8659-8665
    [2]
    S.Xiao, D.Pan, R.Liang, et al. Appl. Catal. B Environ., 236 (2018),pp. 304-313
    [3]
    X.A.Dong, J.Li, Q.Xing, et al. Appl. Catal. B: Environ., 232 (2018),pp. 69-76
    [4]
    C.Paolucci, I.Khurana, A.A.Parekh, et al. Science, 357 (2017),pp. 898-903
    [5]
    Y.Zhao, Y.Zhao, G.I.N.Waterhouse, et al. Adv. Mater., 29 (2017),p. 1703828
    [6]
    Y.Zhao, G.Chen, T.Bian, et al. Adv. Mater., 27 (2015),pp. 7824-7831
    [7]
    Y.Duan, J.Luo, S.Zhou, et al. Appl. Catal. B: Environ., 234 (2018),pp. 206-212
    [8]
    F.Dong, Q.Li, Y.Sun, et al. ACS Catal., 4 (2014),pp. 4341-4350
    [9]
    J.Li, W.Cui, Y.Sun, et al. J. Mater. Chem., 5 (2017),p. 1803127
    [10]
    G.Di, Z.Zhu, H.Zhang, et al. Chem. Eng. J., 328 (2017),pp. 141-151
    [11]
    W.K.Jo, Y.G.Kim, S.Tonda J. Hazard. Mater., 357 (2018),pp. 19-29
    [12]
    Y.Zhao, Z.Li, M.Li, et al. Adv. Mater., 30 (2018),p. 1803127
    [13]
    C.Li, M.Wei, D.G.Evans, et al. Small, 10 (2014),pp. 4469-4486
    [14]
    S.Tonda, W.K.Jo Catal. Today, 315 (2018),pp. 213-222
    [15]
    W.Cui, J.Li, W.Cen, et al. J. Catal., 352 (2017),pp. 351-360
    [16]
    X.Li, Y.Sun, T.Xiong, et al. J. Catal., 352 (2017),pp. 102-112
    [17]
    X.Li, W.Zhang, W.Cui, et al. Appl. Catal. B: Environ., 221 (2018),pp. 482-489
    [18]
    G.Kresse, D.Joubert Phys. Rev. B, 59 (1999),pp. 1758-1775
    [19]
    J.Heyd, G.E.Scuseria, M.Ernzerhof J. Chem. Phys., 118 (2003),pp. 8207-8215
    [20]
    S.Grimme J. Comput. Chem., 27 (2006),pp. 1787-1799
    [21]
    J.P.Perdew, K.Burke, M.Ernzerhof Phys. Rev. Lett., 77 (1996),pp. 3865-3868
    [22]
    P.E.Blöchl Phys. Rev. B, 50 (1994),pp. 17953-17979
    [23]
    G.Kresse, J.Furthmüller Phys. Rev. B, 54 (1996),pp. 11169-11186
    [24]
    S.J.Palmer, R.L.Frost, G.Ayoko, et al. J. Raman Spectrosc., 39 (2008),pp. 395-401
    [25]
    W.Xu, B.Zhang, B.Xu, et al. Compos. Part. A: Appl. Sci. Manuf., 91 (2016),pp. 30-40
    [26]
    W.Xu, B.Zhang, X.Wang, et al. J. Hazard. Mater., 343 (2018),pp. 364-375
    [27]
    J.Di, C.Chen, C.Zhu, et al. Appl. Catal. B: Environ., 238 (2018),pp. 119-125
    [28]
    W.He, Y.Sun, G.Jiang, et al. Appl. Catal. B: Environ., 239 (2018),pp. 619-627
    [29]
    M.Kantcheva J. Catal., 223 (2004),pp. 352-363
    [30]
    X.Weng, X.Dai, Q.Zeng, et al. J. Colloid Interface Sci., 461 (2016),pp. 9-14
    [31]
    F.Gao, X.Tang, H.Yi, et al. Chem. Eng. J., 322 (2017),pp. 525-537
    [32]
    K.Zha, S.Cai, H.Hu, et al. J. Phys. Chem. C, 121 (2017),pp. 25243-25254
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return