Yuewen Shao, Xun Hu, Zhanming Zhang, Kai Sun, Guanggang Gao, Tao Wei, Shu Zhang, Song Hu, Jun Xiang, Yi Wang. Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization. Green Energy&Environment, 2019, 4(4): 400-413. doi: 10.1016/j.gee.2018.10.002
Citation: Yuewen Shao, Xun Hu, Zhanming Zhang, Kai Sun, Guanggang Gao, Tao Wei, Shu Zhang, Song Hu, Jun Xiang, Yi Wang. Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization. Green Energy&Environment, 2019, 4(4): 400-413. doi: 10.1016/j.gee.2018.10.002

Direct conversion of furfural to levulinic acid/ester in dimethoxymethane: Understanding the mechanism for polymerization

doi: 10.1016/j.gee.2018.10.002
  • This study investigated the conversion of furfural to 5-hydroxymethylfurfural (HMF) and further to levulinic acid/ester in dimethoxymethane under acidic conditions, with the particular focus on understanding the mechanism for polymer formation. The results showed that furfural could react with dimethoxymethane via electrophilic substitution reaction to form HMF or the ether/acetal of HMF, which were further converted to levulinic acid and methyl levulinate. The polymerization of furfural and the cross-polymerization between dimethoxymethane and the levulinic acid/ester produced were the main side reactions leading to the decreased yields of levulinic acid/ester. Comparing to the other solvent, methanol as the co-solvent helped to alleviate but not totally inhibited the occurrences of the polymerization, as the polymerization reactions via aldol condensation did not eliminate the CO functionalities. As a consequence, the polymerization reactions continued to proceed. Other co-solvent used such as guaiacol, dimethyl sulfoxide and acetone interfered with the transformation of furfural to HMF or aided the polymerization reactions. The polymer produced from the reactions between furfural and DMM was different from that produced from levulinic acid/ester. The former had a higher crystallinity, while the latter was more aliphatic. The DRIFTS and TG-MS studies showed that the polymer had the carboxylic group, methyl group and the aliphatic structure in the skeleton. The removal of these functionalities was accompanied by the aromatization of the polymer. The condensation of DMM with levulinic acid/ester was the key reason for the diminished production of levulinic acid/ester.

     

  • loading
  • [1]
    X.Chen, H.P.Yang, Y.Q.Chen, et al. J. Anal. Appl. Pyrol., 127 (2017),pp. 292-298
    [2]
    W.Hui, Y.Zhou, Y.Dong, et al. Green Energy Environ, 4 (2019),pp. 49-55
    [3]
    X.D.Yu, Y.H.Guo, K.X.Li, et al. J. Mol. Catal. Chem., 290 (2008),pp. 44-53
    [4]
    Y.H.Guo, K.X.Li, X.D.Yu, et al. Appl. Catal. B Environ., 81 (2008),pp. 182-191
    [5]
    J.J.Martínez, L.Silva, H.A.Rojas, et al. Catal. Today, 296 (2017),pp. 118-126
    [6]
    A.S.Amarasekara, Y.M.Lawrence Tetrahedron Lett., 59 (2018),pp. 1832-1835
    [7]
    C.Ortiz-Cervantes, M.Flores-Alamo, J.J.García Tetrahedron Lett., 57 (2016),pp. 766-771
    [8]
    A.S.Piskun, J.Ftouni, Z.Tang, et al. Appl. Catal. A Gen., 549 (2018),pp. 197-206
    [9]
    J.Feng, X.Gu, Y.D.Xue, et al. Sci. Total Environ., 633 (2018),pp. 426-432
    [10]
    S.Song, S.K.Yao, J.H.Cao, et al. Appl. Catal. B Environ., 217 (2017),pp. 115-124
    [11]
    M.Sudhakar, M.Lakshmi-Kantam, V.Swarna-Jaya, et al. Catal. Commun., 50 (2014),pp. 101-104
    [12]
    D.Unlu, O.Llgen, N.Hilmioglu Chem. Eng. Res. Des., 118 (2017),pp. 248-258
    [13]
    X.Zhou, Z.X.Li, C.Zhao, et al. J. Mol. Catal. Chem., 417 (2016),pp. 71-75
    [14]
    F.G.Cirujano, A.Corma, F.X.Llabrési-Xamena Chem. Eng. Sci., 124 (2015),pp. 52-60
    [15]
    D.Y.Song, S.An, B.Lu, et al. Appl. Catal. B Environ., 179 (2015),pp. 445-457
    [16]
    C.R.Patil, P.S.Niphadkar, V.V.Bokade, et al. Catal. Commun., 43 (2014),pp. 188-191
    [17]
    J.A.Melero, G.Morales, J.Iglesias, et al. Appl. Catal. A Gen., 466 (2013),pp. 116-122
    [18]
    M.R.Park, S.K.Kim, G.T.Jeong J. Ind. Eng. Chem., 61 (2018),pp. 119-123
    [19]
    Y.X.Liu, H.Li, J.He, et al. Catal. Commun., 93 (2017),pp. 20-24
    [20]
    I.Thapa, B.Mullen, A.Saleem, et al. Appl. Catal. A Gen., 539 (2017),pp. 70-79
    [21]
    N.A.S.Ramli, N.A.S.Amin Chem. Eng. J., 283 (2016),pp. 150-159
    [22]
    F.Yue, C.M.Pedersen, X.Y.Yan, et al. Green Energy Environ., 3 (2018),pp. 163-171
    [23]
    G.T.Jeong Ind. Crop. Prod., 62 (2014),pp. 77-83
    [24]
    M.R.Park, H.S.Kim, S.K.Kim, et al. Fuel Process. Technol., 172 (2018),pp. 115-124
    [25]
    X.Hu, S.Wang, R.J.M.Westerhof, et al. Fuel, 141 (2015),pp. 56-63
    [26]
    X.Q.Li, T.Z.Lei, Z.W.Wang, et al. Ind. Crop. Prod., 116 (2018),pp. 73-80
    [27]
    H.S.Kim, S.K.Kim, G.T.Jeong J. Ind. Eng. Chem., 63 (2018),pp. 48-56
    [28]
    X.Hu, S.Wang, L.P.Wu, et al. Fuel Process. Technol., 126 (2014),pp. 315-323
    [29]
    S.Elumalai, B.Agarwal, T.M.Runge, et al. Carbohydr. Polym., 150 (2016),pp. 286-298
    [30]
    Y.X.Wang, C.M.Pedersen, T.S.Deng, et al. Bioresour. Technol., 143 (2013),pp. 384-390
    [31]
    W.Q.Wei, S.B.Wu Chem. Eng. J., 307 (2016),pp. 389-398
    [32]
    V.Choudhary, S.H.Mushrif, C.Ho, et al. J. Am. Chem. Soc., 135 (2013),pp. 3997-4006
    [33]
    J.L.Li, Y.Q.Wang, B.Q.Lu, et al. Appl. Catal. A Gen., 566 (2018),pp. 140-145
    [34]
    D.W.Rackemann, J.P.Bartley, W.O.S.Doherty Ind. Crop. Prod., 52 (2014),pp. 46-57
    [35]
    X.Hu, R.J.M.Westerhof, L.P.Wu, et al. Green Chem., 17 (2014),pp. 219-224
    [36]
    X.Hu, C.Lievens, C.Z.Li ChemSusChem, 5 (2012),pp. 1427-1434
    [37]
    X.Hu, S.J.Jiang, L.P.Wu, et al. Chem. Commun., 53 (2017),pp. 2938-2941
    [38]
    B.Chamnankid, C.Ratanatawanate, K.Faungnawakij Chem. Eng. J., 258 (2014),pp. 341-347
    [39]
    R.F.Perez, S.J.Canhaci, L.E.P.Borges, et al. Catal. Today, 289 (2017),pp. 273-279
    [40]
    D.Y.Song, S.An, Y.N.Sun, et al. J. Catal., 333 (2016),pp. 184-199
    [41]
    Z.Zhang, K.Dong, Z.Zhao ChemSusChem, 4 (2011),pp. 112-118
    [42]
    L.C.Peng, X.Y.Gao, K.L.Chen Fuel, 160 (2015),pp. 123-131
    [43]
    X.Hu, R.J.M.Westerhof, L.Wu, et al. Green Chem., 17 (2015),pp. 219-224
    [44]
    Y.Wang, X.Hu, D.Mourant, et al. Fuel, 111 (2013),pp. 805-812
    [45]
    L.J.Zhang, G.Z.Hu, S.Hu, et al. Sustain. Energy Fuels, 2 (2018),pp. 751-758
    [46]
    X.Hu, R.J.M.Westerhof, D.H.Dong, et al. ACS Sustain. Chem. Eng., 11 (2014),pp. 2562-2575
    [47]
    V.Arjunan, S.Thirunarayanan, S.Mohan Chem. Data Collect., 17 (2018),pp. 75-94
    [48]
    W.Q.Wei, S.B.Wu Fuel, 225 (2018),pp. 311-321
    [49]
    X.Hu, S.Kadarwati, S.Wang, et al. Fuel Process. Technol., 137 (2015),pp. 212-219
    [50]
    Y.Qiao, S.Chen, Y.Liu, et al. Carbohydr. Polym., 133 (2015),pp. 163-170
    [51]
    S.H.Lu, K.R.Zhu, W.C.Song, et al. Sci. Total Environ., 630 (2018),pp. 951-959
    [52]
    B.W.Hu, C.C.Huang, X.Li, et al. Chem. Eng. J., 313 (2017),pp. 527-534
    [53]
    S.J.Yu, X.X.Wang, W.Yao, et al. Environ. Sci. Technol., 51 (2017),pp. 3278-3286
    [54]
    H.Y.He, H.Chen, Y.Z.Zheng, et al. Chem. Eng. Sci., 121 (2015),pp. 169-179
    [55]
    X.Peng, S.G.Shen, C.Y.Wang, et al. Mol. Catal., 442 (2017),pp. 133-139
    [56]
    H.J.Yue, H.J.Sun, T.J.Peng, et al. J. Mol. Struct., 1163 (2018),pp. 449-454
    [57]
    M.S.Ahmad, H.Suzuki, C.Wang, et al. J. Catal., 365 (2018),pp. 344-350
    [58]
    C.T.Zhang, X.Hu, H.Y.Guo, et al. J. Anal. Appl. Pyrol., 134 (2018),pp. 590-605
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (181) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return