Jianguo Qian, Ruiyi Yan, Xiaomin Liu, Chunshan Li, Xiangping Zhang. Modification to solution-diffusion model for performance prediction of nanofiltration of long-alkyl-chain ionic liquids aqueous solutions based on ion cluster. Green Energy&Environment, 2020, 5(1): 105-113. doi: 10.1016/j.gee.2018.10.001
Citation: Jianguo Qian, Ruiyi Yan, Xiaomin Liu, Chunshan Li, Xiangping Zhang. Modification to solution-diffusion model for performance prediction of nanofiltration of long-alkyl-chain ionic liquids aqueous solutions based on ion cluster. Green Energy&Environment, 2020, 5(1): 105-113. doi: 10.1016/j.gee.2018.10.001

Modification to solution-diffusion model for performance prediction of nanofiltration of long-alkyl-chain ionic liquids aqueous solutions based on ion cluster

doi: 10.1016/j.gee.2018.10.001
  • Mathematical modeling for nanofiltration of ionic liquids (ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster. The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations (1-alkyl-3-methylimidazolium chloride: [C 6mim]Cl, [C8mim]Cl, [C10mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.

     

  • loading
  • [1]
    J. Lemus, F.A. Da Silva F, J. Palomar, P.J. Carvalho, J.A.P. Coutinho, 196 (2018) 41-46.
    [2]
    S.N.Shah, M.Pranesh, J.J.Raj, et al. Separ. Purif. Technol., 196 (2018),pp. 96-105
    [3]
    M.M.Seitkalieva, A.S.Kashin, K.S.Egorova, et al. Separ. Purif. Technol., 196 (2018),pp. 318-326
    [4]
    J.Wang, J.Luo, S.Feng, et al. Green Energy Environ., 1 (2016),pp. 43-61
    [5]
    N.Sahiner, S.Sagbas Separ. Purif. Technol., 196 (2018),pp. 208-216
    [6]
    P.Rdzanek, J.Marszałek, W.Kamiński Separ. Purif. Technol., 196 (2018),pp. 124-131
    [7]
    L.Chen, J.Xin, L.Ni, et al. Green Chem., 18 (2016),pp. 2341-2352
    [8]
    H.Amirfirouzkouhi, A.N.Kharat Separ. Purif. Technol., 196 (2018),pp. 132-139
    [9]
    D.Yan, J.Xin, C.Shi, et al. Chem. Eng. J., 323 (2017),pp. 473-482
    [10]
    G.Hussain, M.V.Sofianos, J.Lee, et al. Electrochem. Commun., 86 (2018),pp. 43-47
    [11]
    B.G.Bharate, P.E.Hande, A.B.Samui, et al. Renew. Energy, 126 (2018),pp. 437-444
    [12]
    A.Lahiri, N.Borisenko, F.Endres Top. Curr. Chem., 376 (2018),p. 9
    [13]
    J.Krockel, U.Kragl Chem. Eng. Technol., 26 (2003),pp. 1166-1168
    [14]
    S.Han, H.T.Wong, A.G.Livingston Chem. Eng. Res. Des., 83 (2005),pp. 309-316
    [15]
    C.Abels, C.Redepenning, A.Moll, et al. J. Membr. Sci., 405 (2012),pp. 1-10
    [16]
    J.Wang, J.Luo, X.Zhang, et al. Separ. Purif. Technol., 165 (2016),pp. 18-26
    [17]
    Y.Wang, C.Bai, L.Yan, et al. J. Environ. Chem. Eng., 3 (2015),pp. 2426-2434
    [18]
    K.Kamiński, M.Krawczyk, J.Augustyniak, et al. Chem. Eng. J., 235 (2014),pp. 109-123
    [19]
    S.-A.Choi, Y.-K.Oh, M.-J.Jeong, et al. Renew. Energy, 65 (2014),pp. 169-174
    [20]
    J.Saien, S.Asadabadi Fluid Phase Equil., 386 (2015),pp. 134-139
    [21]
    M.-L.Ge, C.-Y.Lu, X.-Y.Liu, et al. J. Chem. Thermodyn., 91 (2015),pp. 279-285
    [22]
    S.M.Chen, S.J.Zhang, X.M.Liu, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 5893-5906
    [23]
    J.Qian, X.Liu, R.Yan, et al. Ind. Eng. Chem. Res., 57 (2018),pp. 7633-7642
    [24]
    H.Al-Zoubi, W.Omar J. Chem. Eng., 26 (2009),pp. 799-805
    [25]
    J.Luo, L.Ding, B.Qi, et al. Bioresour. Technol., 102 (2011),pp. 7437-7442
    [26]
    O.Ajao, M.Rahni, M.Marinova, et al. Chem. Eng. J., 260 (2015),pp. 605-615
    [27]
    A.Yaroshchuk, X.Martínez-Lladó, L.Llenas, et al. J. Membr. Sci., 368 (2011),pp. 192-201
    [28]
    S.E.Friberg, Q.Yin, F.Pavel, et al. J. Dispers. Sci. Technol., 21 (2000),pp. 185-197
    [29]
    T.L.Merrigan, E.D.Bates, S.C.Dorman, et al. Chem. Commun. (2000),pp. 2051-2052
    [30]
    B.L.Bhargava, M.L.Klein J. Chem. Theor. Comput., 6 (2010),pp. 873-879
    [31]
    K.Shimizu, A.A.H.Padua, J.N.C.Lopes J. Phys. Chem. B, 114 (2010),pp. 15635-15641
    [32]
    Y.M.Ji, R.Shi, Y.T.Wang, et al. J. Phys. Chem. B, 117 (2013),pp. 1104-1109
    [33]
    T.Pal, R.Biswas Theor. Chem. Acc., 132 (2013)
    [34]
    K.Shimizu, C.E.S.Bernardes, J.N.C.Lopes J. Phys. Chem. B, 118 (2014),pp. 567-576
    [35]
    X.Liu, G.Zhou, H.He, et al. Ind. Eng. Chem. Res., 54 (2015),pp. 1681-1688
    [36]
    D.van der Spoel, E.Lindahl, B.Hess, et al. J. Comput. Chem., 26 (2005),pp. 1701-1718
    [37]
    B.Hess, C.Kutzner, D.van der Spoel, et al. J. Chem. Theor. Comput., 4 (2008),pp. 435-447
    [38]
    Z.P.Liu, T.Chen, A.Bell, et al. J. Phys. Chem. B, 114 (2010),pp. 4572-4582
    [39]
    M.Praprotnik, D.Janezic, J.Mavri J. Phys. Chem. A, 108 (2004),pp. 11056-11062
    [40]
    J.Zhou, X.Liu, S.Zhang, et al. AlChE J., 63 (2016),pp. 2248-2256
    [41]
    W.R.Bowen, A.W.Mohammad, N.Hilal J. Membr. Sci., 126 (1997),pp. 91-105
    [42]
    R.Ghosh, Z.F.Cui Biotechnol. Bioeng., 68 (2000),pp. 191-203
    [43]
    H.Tokuda, K.Hayamizu, K.Ishii, et al. J. Phys. Chem. B, 108 (2004),pp. 16593-16600
    [44]
    M.H.Kowsari, S.Alavi, M.Ashrafizaadeh, et al. J. Chem. Phys., 129 (2008),p. 224508
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (58) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return