Dong Chen, Linlin Xu, Hui Liu, Jun Yang. Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy&Environment, 2019, 4(3): 254-263. doi: 10.1016/j.gee.2018.09.002
Citation: Dong Chen, Linlin Xu, Hui Liu, Jun Yang. Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction. Green Energy&Environment, 2019, 4(3): 254-263. doi: 10.1016/j.gee.2018.09.002

Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction

doi: 10.1016/j.gee.2018.09.002
  • Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium (CuPd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure, which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced CuPd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical CuPd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced CuPd alloy multicubes only exhibit very low Faradaic efficiency (34.3%) for electrocatalytic conversion of carbon dioxide (CO2) to carbon monoxide (CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction.

     

  • loading
  • [1]
    S.Guo, X.Zhang, W.Zhu, et al. J. Am. Chem. Soc., 136 (2014),pp. 15026-15033
    [2]
    G.Jiang, H.Zhu, X.Zhang, et al. ACS Nano, 9 (2015),pp. 11014-11022
    [3]
    D.Chen, P.Sun, H.Liu, et al. J. Mater. Chem. A, 5 (2017),pp. 4421-4429
    [4]
    D.Wang, H.L.Xin, H.Wang, et al. Chem. Mater., 24 (2012),pp. 2274-2281
    [5]
    J.Mao, Y.Liu, Z.Chen, et al. Chem. Commun., 50 (2014),pp. 4588-4591
    [6]
    Z.Chen, J.Zhang, Y.Zhang, et al. Nano Energy, 42 (2017),pp. 353-362
    [7]
    S.Hu, L.Scudiero, S.Ha Electrochim. Acta, 83 (2012),pp. 354-358
    [8]
    M.Ren, Y.Zhou, F.Tao, et al. J. Phys. Chem. C, 118 (2014),pp. 12669-12675
    [9]
    L.Wang, J.J.Zhai, K.Jiang, et al. Int. J. Hydrogen Energy, 40 (2015),pp. 1726-1734
    [10]
    C.Rice, S.Ha, R.M.Masel, et al. J. Power Sources, 111 (2002),pp. 83-89
    [11]
    S.Zhang, Y.Shao, G.Yin, et al. Angew. Chem. Int. Ed., 49 (2010),pp. 2211-2214
    [12]
    N.Kristian, Y.S.Yan, X.Wang Chem. Commun., 3 (2008),pp. 353-355
    [13]
    J.Noborikawa, J.Lau, J.Ta, et al. Electrochim. Acta, 137 (2014),pp. 654-660
    [14]
    D.Chen, Q.Yao, P.Cui, et al. ACS Appl. Energy Mater., 1 (2018),pp. 883-890
    [15]
    K.Wang, R.Sriphathoorat, S.Luo, et al. J. Mater. Chem. A, 4 (2016),pp. 13425-13430
    [16]
    L.Ma, C.Wang, Y.Xia, et al. Angew. Chem. Int. Ed., 127 (2015),pp. 5758-5763
    [17]
    L.Ma, C.Wang, M.Gong, et al. ACS Nano, 6 (2012),pp. 9797-9806
    [18]
    H.Liu, J.Qu, Y.Chen, et al. J. Am. Chem. Soc., 134 (2012),pp. 11602-11610
    [19]
    Q.Wang, S.Chen, F.Shi, et al. Adv. Mater., 28 (2016),pp. 10673-10678
    [20]
    Y.Nie, L.Li, Z.Wei Chem. Soc. Rev., 44 (2015),pp. 2168-2201
    [21]
    H.M.An, Z.L.Zhao, Q.Wang, et al. ChemElectroChem, 5 (2018),pp. 1345-1349
    [22]
    L.Xiong, Y.X.Huang, X.W.Liu, et al. Electrochim. Acta, 89 (2013),pp. 24-28
    [23]
    S.Ma, M.Sadakiyo, M.Heima, et al. J. Am. Chem. Soc., 139 (2017),pp. 47-50
    [24]
    B.L.V.Prasad, S.I.Stoeva, C.M.Sorensen, et al. Chem. Mater., 15 (2003),pp. 935-942
    [25]
    S.-W.Kim, J.Park, Y.Jang, et al. Nano Lett., 3 (2003),pp. 1289-1291
    [26]
    Q.Zhang, J.Xie, J.Yang, et al. ACS Nano, 3 (2009),pp. 139-148
    [27]
    D.S.Sidhaye, B.L.V.Prasad New J. Chem., 35 (2011),pp. 755-763
    [28]
    C.P.Deming, A.Zhao, Y.Song, et al. ChemElectroChem, 2 (2015),pp. 1719-1727
    [29]
    C.P.Deming, R.Mercado, V.Gadiraju, et al. ACS Sustain. Chem. Eng., 3 (2015),pp. 3315-3323
    [30]
    F.Yang, Y.Zhang, P.-F.Liu, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 6773-6780
    [31]
    D.Chen, P.Cui, H.He, et al. J. Power Sources, 272 (2014),pp. 152-159
    [32]
    L.Han, H.Liu, P.Cui, et al. Sci. Rep., 4 (2014),p. 6414
    [33]
    D.Kim, J.Resasco, Y.Yu, et al. Nat. Commun., 5 (2014),p. 4948
    [34]
    J.K.Nørskov, T.Bligaard, J.Rossmeisl, et al. Nat. Chem., 1 (2009),pp. 37-46
    [35]
    T.J.Vidaković, M.H.Christov, K.Sundmacher Electrochim. Acta, 52 (2007),pp. 5606-5613
    [36]
    M.H.Shao, K.Sasaki, R.R.Adzic J. Am. Chem. Soc., 128 (2006),pp. 3526-3527
    [37]
    U.B.Demirci J. Power Sources, 173 (2007),pp. 11-18
    [38]
    M.Shao, K.Shoemaker, A.Peles, et al. J. Am. Chem. Soc., 132 (2010),pp. 9253-9255
    [39]
    M.Wakisaka, S.Mitsui, Y.Hirose, et al. J. Phys. Chem. B, 110 (2006),pp. 23489-23496
    [40]
    L.Y.Jiang, X.Y.Huang, A.J.Wang, et al. J. Mater. Chem. A, 5 (2017),pp. 10554-10560
    [41]
    Y.Liu, S.Liu, Z.Che, et al. J. Mater. Chem. A, 4 (2016),pp. 16690-16697
    [42]
    Z.Cao, Q.Chen, J.Zhang, et al. Nat. Commun., 8 (2017),p. 15131
    [43]
    X.Zhao, B.Luo, R.Long, et al. J. Mater. Chem. A, 3 (2015),pp. 4134-4138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return