Bojie Li, Yijie Liu, Xiaoyu Zhang, Ping He, Haoshen Zhou. Hybrid polymer electrolyte for Li–O2 batteries. Green Energy&Environment, 2019, 4(1): 3-19. doi: 10.1016/j.gee.2018.08.002
Citation: Bojie Li, Yijie Liu, Xiaoyu Zhang, Ping He, Haoshen Zhou. Hybrid polymer electrolyte for Li–O2 batteries. Green Energy&Environment, 2019, 4(1): 3-19. doi: 10.1016/j.gee.2018.08.002

Hybrid polymer electrolyte for Li–O2 batteries

doi: 10.1016/j.gee.2018.08.002
  • Li–O2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O2 batteries as well.

     

  • loading
  • [1]
    M.Armand, J.M.Tarascon Nature, 451 (2008),pp. 652-657
    [2]
    T.Ogasawara, A.Debart, M.Holzapfel, et al. J. Am. Chem. Soc., 128 (2006),pp. 1390-1393
    [3]
    K.G.Gallagher, S.Goebel, T.Greszler, et al. Energy Environ. Sci., 7 (2014),pp. 1555-1563
    [4]
    P.G.Bruce, S.A.Freunberger, L.J.Hardwick, et al. Nat. Mater., 11 (2012),pp. 19-29
    [5]
    X.Zhang, X.-G.Wang, Z.Xie, et al. Green Energy Environ., 1 (2016),pp. 4-17
    [6]
    K.M.Abraham, Z.Jiang J. Electrochem. Soc., 143 (1996),pp. 1-5
    [7]
    J.S.Lee, S.T.Kim, R.Cao, et al. Adv. Energy Mater., 1 (2011),pp. 34-50
    [8]
    P.He, T.Zhang, J.Jiang, et al. J. Phys. Chem. Lett., 7 (2016),pp. 1267-1280
    [9]
    J.Christensen, P.Albertus, R.S.Sanchez-Carrera, et al. J. Electrochem. Soc., 159 (2012),pp. R1-R30
    [10]
    Q.Li, J.Chen, L.Fan, et al. Green Energy Environ., 1 (2016),pp. 18-42
    [11]
    N.Feng, P.He, H.Zhou Adv. Energy Mater., 6 (2016),p. 1502303
    [12]
    Y.Liu, B.Li, H.Kitaura, et al. ACS Appl. Mater. Inter., 7 (2015),pp. 17307-17310
    [13]
    Y.Guo, Y.Ouyang, D.Li, et al. Energy Storage Mater., 16 (2019),pp. 203-211
    [14]
    Y.Liu, P.He, H.Zhou Adv. Energy Mater., 8 (2018),p. 1701602
    [15]
    A.Scalia, F.Bella, A.Lamberti, et al. J. Power Sources, 359 (2017),pp. 311-321
    [16]
    L.Porcarelli, A.S.Shaplov, F.Bella, et al. ACS Energy Lett., 1 (2016),pp. 678-682
    [17]
    D.E.Fenton, J.M.Parker, P.V.Wright Polymer, 14 (1973)
    [18]
    M.B.Armand, J.M.Chabagno, M.J.Duclot
    [19]
    R.Koksbang, I.I.Olsen, D.Shackle Solid State Ion., 69 (1994),pp. 320-335
    [20]
    F.Bella, F.Colo, J.R.Nair, et al. ChemSusChem, 8 (2015),pp. 3668-3676
    [21]
    F.Colò, F.Bella, J.R.Nair, et al. J. Power Sources, 365 (2017),pp. 293-302
    [22]
    N.N.M.Radzir, S.A.Hanifah, A.Ahmad, et al. J. Solid State Electrochem., 19 (2015),pp. 3079-3085
    [23]
    Y.Li, X.Wang, S.Dong, et al. Adv. Energy Mater., 6 (2016),p. 1600751
    [24]
    Z.Peng, S.A.Freunberger, L.J.Hardwick, et al. Angew. Chem. Int. Ed., 50 (2011),pp. 6351-6355
    [25]
    J.Hassoun, F.Croce, M.Armand, et al. Angew. Chem. Int. Ed., 50 (2011),pp. 2999-3002
    [26]
    K.Liu, H.Sun, S.Dong, et al. Adv. Mater. Interfaces, 4 (2017),p. 1700693
    [27]
    Z.Guo, C.Li, J.Liu, et al. Angew. Chem. Int. Ed., 56 (2017),pp. 7505-7509
    [28]
    P.K.Varshney, S.Gupta Ionics, 17 (2011),pp. 479-483
    [29]
    A.Manuel Stephan Eur. Polym. J., 42 (2006),pp. 21-42
    [30]
    C.V.Amanchukwu, J.R.Harding, Y.Shao-Horn, et al. Chem. Mater., 27 (2015),pp. 550-561
    [31]
    W.M.Wang, E.Y.Yi, A.J.Fici, et al. J. Phys. Chem. C, 121 (2017),pp. 2563-2573
    [32]
    Y.R.Zhao, Z.Huang, S.J.Chen, et al. Solid State Ion., 295 (2016),pp. 65-71
    [33]
    F.Chen, D.J.Yang, W.P.Zha, et al. Electrochim. Acta, 258 (2017),pp. 1106-1114
    [34]
    W.Liu, N.Liu, J.Sun, et al. Nano Lett., 15 (2015),pp. 2740-2745
    [35]
    T.Yang, J.Zheng, Q.Cheng, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 21773-21780
    [36]
    B.Kurc Electrochim. Acta, 125 (2014),pp. 415-420
    [37]
    X.Zhang, T.Liu, S.F.Zhang, et al. J. Am. Chem. Soc., 139 (2017),pp. 13779-13785
    [38]
    A.Kumar, S.Logapperumal, R.Sharma, et al. Solid State Ion., 289 (2016),pp. 150-158
    [39]
    S.H.Song, J.W.Wang, J.W.Tang, et al. Ionics, 23 (2017),pp. 3365-3375
    [40]
    W.Q.Zhang, J.H.Nie, F.Li, et al. Nano Energy, 45 (2018),pp. 413-419
    [41]
    P.Pal, A.Ghosh Electrochim. Acta, 260 (2018),pp. 157-167
    [42]
    K.W.Chew, K.W.Tan Int. J. Electrochem. Sci., 6 (2011),pp. 5792-5801
    [43]
    B.Jinisha, K.M.Anilkumar, M.Manoj, et al. Electrochim. Acta, 235 (2017),pp. 210-222
    [44]
    Z.Zhong, Q.Cao, X.Y.Wang, et al. Ionics, 18 (2012),pp. 47-53
    [45]
    E.Nasybulin, W.Xu, M.H.Engelhard, et al. J. Power Sources, 243 (2013),pp. 899-907
    [46]
    C.Y.Chiu, Y.J.Yen, S.W.Kuo, et al. Polymer, 48 (2007),pp. 1329-1342
    [47]
    K.S.Ngai, S.Ramesh, K.Ramesh, et al. Ionics, 22 (2016),pp. 1259-1279
    [48]
    I.Nicotera, L.Coppola, C.Oliviero, et al. Solid State Ion., 177 (2006),pp. 581-588
    [49]
    D.W.Kang, D.W.Kim, S.I.Jo, et al. J. Power Sources, 112 (2002),pp. 1-7
    [50]
    J.Read J. Electrochem. Soc., 153 (2006),pp. A96-A100
    [51]
    E.Nasybulin, W.Xu, M.H.Engelhard, et al. J. Phys. Chem. C, 117 (2013),pp. 2635-2645
    [52]
    M.Dahbi, F.Ghamouss, F.Tran-Van, et al. J. Power Sources, 196 (2011),pp. 9743-9750
    [53]
    G.A.Elia, J.B.Park, Y.K.Sun, et al. Chemelectrochem, 1 (2014),pp. 47-50
    [54]
    R.Younesi, G.M.Veith, P.Johansson, et al. Energy Environ. Sci., 8 (2015),pp. 1905-1922
    [55]
    L.Johnson, C.M.Li, Z.Liu, et al. Nat. Chem., 6 (2014),pp. 1091-1099
    [56]
    D.W.Mcowen, D.M.Seo, O.Borodin, et al. Energy Environ. Sci., 7 (2014),pp. 416-426
    [57]
    E.Paillard, F.Toulgoat, C.Iojoiu, et al. J. Fluor. Chem., 134 (2012),pp. 72-76
    [58]
    E.Paillard, F.Toulgoat, R.Arvai, et al. J. Fluor. Chem., 132 (2011),pp. 1213-1218
    [59]
    V.Aravindan, P.Vickraman Mater. Chem. Phys., 115 (2009),pp. 251-257
    [60]
    A.Chamaani, M.Safa, N.Chawla, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 33819-33826
    [61]
    F.Li, T.Zhang, Y.Yamada, et al. Adv. Energy Mater., 3 (2013),pp. 532-538
    [62]
    Y.Liu, L.Suo, H.Lin, et al. J. Mater. Chem. A, 2 (2014),pp. 9020-9024
    [63]
    L.E.Camacho-Forero, T.W.Smith, P.B.Balbuena J. Phys. Chem. C, 121 (2017),pp. 182-194
    [64]
    B.Liu, W.Xu, P.Yan, et al. Adv. Funct. Mater., 26 (2016),pp. 605-613
    [65]
    A.Zalewska Solid State Ion., 157 (2003),pp. 233-239
    [66]
    J.E.Weston, B.C.H.Steele Solid State Ion., 7 (1982),pp. 75-79
    [67]
    F.Croce, G.B.Appetecchi, L.Persi, et al. Nature, 394 (1998),pp. 456-458
    [68]
    F.Croce, L.Persi, B.Scrosati, et al. Electrochim. Acta, 46 (2001),pp. 2457-2461
    [69]
    J.Zhang, N.Zhao, M.Zhang, et al. Nano Energy, 28 (2016),pp. 447-454
    [70]
    Y.W.Chen-Yang, H.C.Chen, F.J.Lin, et al. Solid State Ion., 150 (2002),pp. 327-335
    [71]
    J.Zheng, M.Tang, Y.Y.Hu Angew. Chem. Int. Ed., 55 (2016),pp. 12538-12542
    [72]
    J.Zheng, Y.Y.Hu ACS Appl. Mater. Interfaces, 10 (2018),pp. 4113-4120
    [73]
    J.Bae, Y.Li, J.Zhang, et al. Angew. Chem. Int. Ed., 57 (2018),pp. 2096-2100
    [74]
    H.Zhai, P.Xu, M.Ning, et al. Nano Lett., 17 (2017),pp. 3182-3187
    [75]
    W.Liu, S.W.Lee, D.Lin, et al. Nat. Energy, 2 (2017),p. 17035
    [76]
    C.Monroe, J.Newman J. Electrochem. Soc., 152 (2005),pp. A396-A404
    [77]
    L.Porz, T.Swamy, B.W.Sheldon, et al. Adv. Energy Mater., 7 (2017),p. 1701003
    [78]
    F.Aguesse, W.Manalastas, L.Buannic, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 3808-3816
    [79]
    C.Z.Zhao, X.Q.Zhang, X.B.Cheng, et al. Proc. Natl. Acad. Sci. U. S. A., 114 (2017),pp. 11069-11074
    [80]
    L.Long, S.Wang, M.Xiao, et al. J. Mater. Chem. A, 4 (2016),pp. 10038-10069
    [81]
    P.C.Marr, A.C.Marr Green Chem., 18 (2016),pp. 105-128
    [82]
    W.Xu, V.V.Viswanathan, D.Y.Wang, et al. J. Power Sources, 196 (2011),pp. 3894-3899
    [83]
    S.A.Freunberger, Y.H.Chen, Z.Q.Peng, et al. J. Am. Chem. Soc., 133 (2011),pp. 8040-8047
    [84]
    S.A.Freunberger, Y.Chen, N.E.Drewett, et al. Angew. Chem. Int. Ed., 50 (2011),pp. 8609-8613
    [85]
    C.O.Laoire, S.Mukerjee, E.J.Plichta, et al. J Electrochem. Soc., 158 (2011),pp. A302-A308
    [86]
    B.D.Mccloskey, D.S.Bethune, R.M.Shelby, et al. J. Phys. Chem. Lett., 2 (2011),pp. 1161-1166
    [87]
    V.S.Bryantsev, V.Giordani, W.Walker, et al. J. Phys. Chem. A, 115 (2011),pp. 12399-12409
    [88]
    S.Di Tommaso, P.Rotureau, O.Crescenzi, et al. Phys. Chem. Chem. Phys., 13 (2011),pp. 14636-14645
    [89]
    V.S.Bryantsev, F.Faglioni J. Phys. Chem. A, 116 (2012),pp. 7128-7138
    [90]
    V.S.Bryantsev, J.Uddin, V.Giordani, et al. J. Electrochem. Soc., 160 (2012),pp. A160-A171
    [91]
    B.D.Adams, R.Black, Z.Williams, et al. Adv. Energy Mater., 5 (2015),p. 1400867
    [92]
    M.Christy, A.Arul, A.Zahoor, et al. J. Power Sources, 342 (2017),pp. 825-835
    [93]
    Y.Chen, S.A.Freunberger, Z.Peng, et al. J. Am. Chem. Soc., 134 (2012),pp. 7952-7957
    [94]
    W.Walker, V.Giordani, J.Uddin, et al. J. Am. Chem. Soc., 135 (2013),pp. 2076-2079
    [95]
    V.S.Bryantsev, V.Giordani, W.Walker, et al. J. Phys. Chem. C, 117 (2013),pp. 11977-11988
    [96]
    C.Yang, K.Fu, Y.Zhang, et al. Adv. Mater., 29 (2017),p. 1701169
    [97]
    W.Xu, J.Hu, M.H.Engelhard, et al. J. Power Sources, 215 (2012),pp. 240-247
    [98]
    M.J.Trahan, S.Mukerjee, E.J.Plichta, et al. J. Electrochem. Soc., 160 (2013),pp. A259-A267
    [99]
    N.B.Aetukuri, B.D.Mccloskey, J.M.Garcia, et al. Nat. Chem., 7 (2015),pp. 50-56
    [100]
    D.Sharon, M.Afri, M.Noked, et al. J. Phys. Chem. Lett., 4 (2013),pp. 3115-3119
    [101]
    D.G.Kwabi, T.P.Batcho, C.V.Amanchukwu, et al. J. Phys. Chem. Lett., 5 (2014),pp. 2850-2856
    [102]
    M.Morita, F.Tachihara, Y.Matsuda Electrochim. Acta, 32 (1987),pp. 299-305
    [103]
    S.Feng, M.Chen, L.Giordano, et al. J. Mater. Chem. A, 5 (2017),pp. 23987-23998
    [104]
    J.Zhang, B.Sun, X.Xie, et al. Electrochim. Acta, 183 (2015),pp. 56-62
    [105]
    Y.Shi, C.Wu, L.Li, et al. J. Electrochem. Soc., 164 (2017),pp. A2031-A2037
    [106]
    C.Wu, C.Liao, T.Li, et al. J. Mater. Chem. A, 4 (2016),pp. 15189-15196
    [107]
    H.S.Woo, Y.B.Moon, S.Seo, et al. ACS Appl. Mater. Interfaces, 10 (2018),pp. 687-695
    [108]
    J.Yi, H.Zhou ChemSusChem, 9 (2016),pp. 2391-2396
    [109]
    J.Yi, Y.Liu, Y.Qiao, et al. ACS Energy Lett., 2 (2017),pp. 1378-1384
    [110]
    J.Pan, H.Li, H.Sun, et al. Small, 14 (2018),p. 1703454
    [111]
    K.R.Seddon J. Chem. Technol. Biotechnol., 68 (1997),pp. 351-356
    [112]
    M.Armand, F.Endres, D.R.Macfarlane, et al. Nat. Mater., 8 (2009),pp. 621-629
    [113]
    J.J.H.Davis Chem. Lett., 33 (2004),pp. 1072-1077
    [114]
    T.Kuboki, T.Okuyama, T.Ohsaki, et al. J. Power Sources, 146 (2005),pp. 766-769
    [115]
    S.Ferrari, E.Quartarone, C.Tomasi, et al. J. Power Sources, 235 (2013),pp. 142-147
    [116]
    P.Schmitz, R.Jakelski, M.Pyschik, et al. ChemSusChem, 10 (2017),pp. 876-883
    [117]
    P.Schmitz, M.Kolek, M.Pyschik, et al. ChemistrySelect, 2 (2017),pp. 6052-6056
    [118]
    M.M.Islam, T.Imase, T.Okajima, et al. J. Phys.Chem. A, 113 (2009),pp. 912-916
    [119]
    J.T.Frith, A.E.Russell, N.Garcia-Araez, et al. Electrochem. Commun., 46 (2014),pp. 33-35
    [120]
    F.Mizuno, K.Takechi, S.Higashi, et al. J. Power Sources, 228 (2013),pp. 47-56
    [121]
    F.Soavi, S.Monaco, M.Mastragostino J. Power Sources, 224 (2013),pp. 115-119
    [122]
    G.A.Elia, J.Hassoun, W.J.Kwak, et al. Nano Lett., 14 (2014),pp. 6572-6577
    [123]
    J.Xie, Q.Dong, I.Madden, et al. Nano Lett., 15 (2015),pp. 8371-8376
    [124]
    C.V.Amanchukwu, H.-H.Chang, M.Gauthier, et al. Chem. Mater., 28 (2016),pp. 7167-7177
    [125]
    M.Piana, J.Wandt, S.Meini, et al. J. Electrochem. Soc., 161 (2014),pp. A1992-A2001
    [126]
    S.Das, J.Hojberg, K.B.Knudsen, et al. J. Phys. Chem. C, 119 (2015),pp. 18084-18090
    [127]
    K.Cai, H.Jiang, W.Pu Int. J. Electrochem. Sci., 9 (2014),pp. 390-397
    [128]
    Z.J.Liang, Y.C.Lu J. Am. Chem. Soc., 138 (2016),pp. 7574-7583
    [129]
    J.B.Park, S.H.Lee, H.G.Jung, et al. Adv. Mater., 30 (2018),p. 1704162
    [130]
    Y.B.Kim, I.T.Kim, M.J.Song, et al. Electrochim. Acta, 210 (2016),pp. 821-828
    [131]
    G.Hernández, M.Işik, D.Mantione, et al. J. Mater. Chem. A, 5 (2017),pp. 16231-16240
    [132]
    Y.H.Chen, S.A.Freunberger, Z.Q.Peng, et al. Nat. Chem., 5 (2013),pp. 489-494
    [133]
    W.J.Kwak, S.J.Park, H.G.Jung, et al. Adv. Energy Mater., 8 (2018),p. 1702258
    [134]
    S.H.Lee, J.B.Park, H.S.Lim, et al. Adv. Energy Mater., 7 (2017),p. 1602417
    [135]
    C.Y.Xu, G.Y.Xu, Y.D.Zhang, et al. ACS Energy Lett., 2 (2017),pp. 2659-2666
    [136]
    B.J.Bergner, M.R.Busche, R.Pinedo, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 7756-7765
    [137]
    D.J.Lee, H.Lee, Y.J.Kim, et al. Adv. Mater., 28 (2016),pp. 857-863
    [138]
    T.Zhang, K.Liao, P.He, et al. Energy Environ. Sci., 9 (2016),pp. 1024-1030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return