Max J. Hülsey. Shell biorefinery: A comprehensive introduction. Green Energy&Environment, 2018, 3(4): 318-327. doi: 10.1016/j.gee.2018.07.007
Citation: Max J. Hülsey. Shell biorefinery: A comprehensive introduction. Green Energy&Environment, 2018, 3(4): 318-327. doi: 10.1016/j.gee.2018.07.007

Shell biorefinery: A comprehensive introduction

doi: 10.1016/j.gee.2018.07.007
  • Biomass refinery is considered to be a key technology in the 21st century due to the importance of the sustainable production of various bio-derived fuels and fine chemicals. Besides the synthesis of oxygen-containing chemicals mainly from lignocellulosic biomass, nitrogen-containing chemicals belong to some of the most important commodity and fine chemicals. In this introductory short review, the main similarities and difficulties between petroleum oil- and biorefinery will be discussed and future challenges will be highlighted. As a particular example, recent developments in the shell biorefinery – the utilization of shell waste – will be reviewed. Particular emphasis will be placed on the structure of shell biomass, the current and emerging fractionation methods and the conversion of chitin and chitosan to various heteroatom-containing chemicals. This review is meant to provide an introduction to beginners in the field of biorefinery as well as a comprehensive discussion of recent proceedings in the field of shell biorefinery. An outlook on the future potential and challenges will be given.

     

  • loading
  • [1]
    D.M.Alonso, J.Q.Bond, J.A.Dumesic Green Chem., 12 (2010),pp. 1493-1513
    [2]
    J.Ohlrogge, D.Allen, B.Berguson, et al. Science, 324 (2009),pp. 1019-1020
    [3]
    E.Jesus, L.Miguel Int. J. Food Sci. Technol., 53 (2018),pp. 1095-1108
    [4]
    D.Esposito, M.Antonietti Chem. Soc. Rev., 44 (2015),pp. 5821-5835
    [5]
    K.L.Kadam, J.D.McMillan Bioresour. Technol., 88 (2003),pp. 17-25
    [6]
    A.Shah, M.Darr, S.Khanal, et al. Biofuels, 8 (2017),pp. 59-69
    [7]
    E.Searcy, P.Flynn, E.Ghafoori, et al. Appl. Biochem. Biotechnol., 137–140 (2007),pp. 639-652
    [8]
    P.M.Mortensen, J.D.Grunwaldt, P.A.Jensen, et al. Appl. Catal. A, 407 (2011),pp. 1-19
    [9]
    S.Xiu, A.Shahbazi Renew. Sustain. Energy Rev., 16 (2012),pp. 4406-4414
    [10]
    S.-C.Xiang, Z.Zhang, C.-G.Zhao, et al. Nat. Commun., 2 (2011),p. 204
    [11]
    W.Yuan, Y.Lin, W.Yang J. Am. Chem. Soc., 126 (2004),pp. 4776-4777
    [12]
    F.Studt, F.Abild-Pedersen, T.Bligaard, et al. Science, 320 (2008),pp. 1320-1322
    [13]
    M.A.Fahim, T.A.Al-Sahhaf, A.Elkilani
    [14]
    J.H.Clark, R.Luque, A.S.Matharu Annu. Rev. Chem. Biomol. Eng., 3 (2012),pp. 183-207
    [15]
    M.F.Demirbas Appl. Energy, 86 (2009),pp. S151-S161
    [16]
    J.H.Clark Nat. Chem., 1 (2009),pp. 12-13
    [17]
    N.Brun, P.Hesemann, D.Esposito Chem. Sci., 8 (2017),pp. 4724-4738
    [18]
    J.N.Chheda, G.W.Huber, J.A.Dumesic Angew. Chem. Int. Ed., 46 (2007),pp. 7164-7183
    [19]
    A.Corma, S.Iborra, A.Velty Chem. Rev., 107 (2007),pp. 2411-2502
    [20]
    G.W.Huber, A.Corma Angew. Chem. Int. Ed., 46 (2007),pp. 7184-7201
    [21]
    M.A.R.Meier, J.O.Metzger, U.S.Schubert Chem. Soc. Rev., 36 (2007),pp. 1788-1802
    [22]
    T.P.Vispute, H.Zhang, A.Sanna, et al. Science, 330 (2010),pp. 1222-1227
    [23]
    R.A.Sheldon Green Chem., 16 (2014),pp. 950-963
    [24]
    L.T.Mika, E.Cséfalvay, A.Németh Chem. Rev., 118 (2017),pp. 505-613
    [25]
    T.Renders, S.Van den Bosch, S.-F.Koelewijn, et al. Energy Environ. Sci., 10 (2017),pp. 1551-1557
    [26]
    W.Schutyser, T.Renders, S.Van den Bosch, et al. Chem. Soc. Rev., 47 (2018),pp. 852-908
    [27]
    Z.Sun, B.Fridrich, A.de Santi, et al. Chem. Rev., 118 (2018),pp. 614-678
    [28]
    C.-H.Zhou, X.Xia, C.-X.Lin, et al. Chem. Soc. Rev., 40 (2011),pp. 5588-5617
    [29]
    C.Li, X.Zhao, A.Wang, et al. Chem. Rev., 115 (2015),pp. 11559-11624
    [30]
    J.Zhang, H.Asakura, J.van Rijn, et al. Green Chem., 16 (2014),pp. 2432-2437
    [31]
    R.Rinaldi, R.Jastrzebski, M.T.Clough, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 8164-8215
    [32]
    G.Gozaydin, A.Yuksel Fuel Process. Technol., 166 (2017),pp. 96-106
    [33]
    J.Zhang, J.Teo, X.Chen, et al. ACS Catal., 4 (2014),pp. 1574-1583
    [34]
    E.M.Anderson, M.L.Stone, M.J.Hülsey, et al. ACS Sustain. Chem. Eng., 6 (2018),pp. 7951-7959
    [35]
    C.O.Tuck, E.Pérez, I.T.Horváth, et al. Science, 337 (2012),pp. 695-699
    [36]
    J.J.Bozell, G.R.Petersen Green Chem., 12 (2010),pp. 539-554
    [37]
    P.Gallezot Chem. Soc. Rev., 41 (2012),pp. 1538-1558
    [38]
    M.J.Hülsey, H.Yang, N.Yan ACS Sustain. Chem. Eng., 6 (2018),pp. 5694-5707
    [39]
    X.Chen, H.Yang, M.J.Hülsey, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 11096-11104
    [40]
    G.M.Lari, G.Pastore, M.Haus, et al. Energy Environ. Sci., 11 (2018),pp. 1012-1029
    [41]
    M.Pelckmans, T.Renders, S.Van de Vyver, et al. Green Chem., 19 (2017),pp. 5303-5331
    [42]
    W.Deng, Y.Wang, S.Zhang, et al. Proc. Natl. Acad. Sci. U.S.A., 115 (2018),pp. 5093-5098
    [43]
    F.M.Kerton, Y.Liu, K.W.Omari, et al. Green Chem., 15 (2013),pp. 860-871
    [44]
    M.Rhazi, J.Desbrières, A.Tolaimate, et al. Polym. Int., 49 (2000),pp. 337-344
    [45]
    I.Younes, M.Rinaudo Mar. Drugs, 13 (2015),pp. 1133-1174
    [46]
    E.B.Ibitoye, I.H.Lokman, M.N.M.Hezmee, et al. Biomed. Mater., 13 (2018),p. 025009
    [47]
    M.S.Islam, S.Khan, M.Tanaka Mar. Pollut. Bull., 49 (2004),pp. 103-110
    [48]
    A.Sapkota, A.R.Sapkota, M.Kucharski, et al. Environ. Int., 34 (2008),pp. 1215-1226
    [49]
    X.Chen, H.Yang, N.Yan Chem. Eur. J., 22 (2016),pp. 13402-13421
    [50]
    J.J.Johnston, H.A.Ghanari, W.B.Wheeler, et al. J. Food Sci., 48 (1983),pp. 33-35
    [51]
    A.P.Sánchez-Camargo, H.A.Martinez-Correa, L.C.Paviani, et al. J. Supercrit. Fluids, 56 (2011),pp. 164-173
    [52]
    N.Yan, X.Chen Nature, 524 (2015),pp. 155-158
    [53]
    F.Khoushab, M.Yamabhai Mar. Drugs, 8 (2010),p. 1988
    [54]
    D.Raabe, C.Sachs, P.Romano Acta Mater., 53 (2005),pp. 4281-4292
    [55]
    A.Percot, C.Viton, A.Domard Biomacromolecules, 4 (2003),pp. 12-18
    [56]
    Y.Qin, X.Lu, N.Sun, et al. Green Chem., 12 (2010),pp. 968-971
    [57]
    H.Xie, S.Zhang, S.Li Green Chem., 8 (2006),pp. 630-633
    [58]
    M.Sharma, C.Mukesh, D.Mondal, et al. RSC Adv., 3 (2013),pp. 18149-18155
    [59]
    P.S.Saravana, T.C.Ho, S.-J.Chae, et al. Carbohydr. Polym., 195 (2018),pp. 622-630
    [60]
    W.Arbia, L.Arbia, L.Adour, et al. Food Technol. Biotechnol., 51 (2013),pp. 12-25
    [61]
    J.Zhang, M.Feng, X.Lu, et al. Carbohydr. Polym., 190 (2018),pp. 148-155
    [62]
    M.Boric, H.Puliyalil, U.Novak, et al. Green Chem., 20 (2018),pp. 1199-1204
    [63]
    D.Ramamoorthy, D.Raghavachari ACS Sustain. Chem. Eng., 6 (2018),pp. 846-853
    [64]
    M.G.Peter J. Macromol. Sci. A, 32 (1995),pp. 629-640
    [65]
    Y.Huang, Z.Zhong, B.Duan, et al. J. Mater. Chem. B, 2 (2014),pp. 3427-3432
    [66]
    S.Wu, B.Duan, X.Zeng, et al. J. Mater. Chem. B, 5 (2017),pp. 2952-2963
    [67]
    F.Ding, H.Deng, Y.Du, et al. Nanoscale, 6 (2014),pp. 9477-9493
    [68]
    X.Shen, J.L.Shamshina, P.Berton, et al. Green Chem., 18 (2016),pp. 53-75
    [69]
    A.Bhatnagar, M.Sillanpää Adv. Colloid Interface Sci., 152 (2009),pp. 26-38
    [70]
    N.K.Mathur, C.K.Narang J. Chem. Educ., 67 (1990),p. 938
    [71]
    X.Gao, X.Chen, J.Zhang, et al. ACS Sustain. Chem. Eng., 4 (2016),pp. 3912-3920
    [72]
    A.Szabolcs, M.Molnar, G.Dibo, et al. Green Chem., 15 (2013),pp. 439-445
    [73]
    X.Chen, S.L.Chew, F.M.Kerton, et al. Green Chem., 16 (2014),pp. 2204-2212
    [74]
    Y.Wang, C.M.Pedersen, T.Deng, et al. Bioresour. Technol., 143 (2013),pp. 384-390
    [75]
    S.Yu, H.Zang, S.Chen, et al. Polym. Degrad. Stab., 134 (2016),pp. 105-114
    [76]
    H.Zang, S.Yu, P.Yu, et al. Carbohydr. Res., 442 (2017),pp. 1-8
    [77]
    F.D.Bobbink, J.Zhang, Y.Pierson, et al. Green Chem., 17 (2015),pp. 1024-1031
    [78]
    H.Kobayashi, K.Techikawara, A.Fukuoka Green Chem., 19 (2017),pp. 3350-3356
    [79]
    J.Zhang, N.Yan ChemCatChem, 9 (2017),pp. 2790-2796
    [80]
    G.Margoutidis, V.H.Parsons, C.S.Bottaro, et al. ACS Sustain. Chem. Eng., 6 (2018),pp. 1662-1669
    [81]
    A.Zhang, G.Wei, X.Mo, et al. Green Chem., 20 (2018),pp. 2320-2327
    [82]
    Y.Pierson, X.Chen, F.D.Bobbink, et al. ACS Sustain. Chem. Eng., 2 (2014),pp. 2081-2089
    [83]
    J.Zhang, N.Yan Green Chem., 18 (2016),pp. 5050-5058
    [84]
    F.E.Wolter, K.Schneider, B.P.Davies, et al. Org. Lett., 11 (2009),pp. 2804-2807
    [85]
    Y.Liu, C.N.Rowley, F.M.Kerton ChemPhysChem, 15 (2014),pp. 4087-4094
    [86]
    W.J.Moran, A.Rodríguez Org. Prep. Proced. Int., 44 (2012),pp. 103-130
    [87]
    E.Abele, E.Lukevics Chem. Heterocycl. Compd., 37 (2001),pp. 141-169
    [88]
    J.A.Marshall, E.D.Robinson J. Org. Chem., 55 (1990),pp. 3450-3451
    [89]
    M.W.Drover, K.W.Omari, J.N.Murphy, et al. RSC Adv., 2 (2012),pp. 4642-4644
    [90]
    K.W.Omari, L.Dodot, F.M.Kerton ChemSusChem, 5 (2012),pp. 1767-1772
    [91]
    X.Chen, Y.Liu, F.M.Kerton, et al. RSC Adv., 5 (2015),pp. 20073-20080
    [92]
    A.D.Sadiq, X.Chen, N.Yan, et al. ChemSusChem, 11 (2018),pp. 532-535
    [93]
    Y.Liu, C.Stähler, J.N.Murphy, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 4916-4922
    [94]
    T.T.Pham, X.Chen, N.Yan, et al. Monatsh. Chem., 149 (2018),pp. 857-861
    [95]
    R.Jayakumar, D.Menon, K.Manzoor, et al. Carbohydr. Polym., 82 (2010),pp. 227-232
    [96]
    R.Jayakumar, M.Prabaharan, S.V.Nair, et al. Biotechnol. Adv., 28 (2010),pp. 142-150
    [97]
    R.Jayakumar, M.Prabaharan, P.T.Sudheesh Kumar, et al. Biotechnol. Adv., 29 (2011),pp. 322-337
    [98]
    B.Krajewska Enzyme Microb. Technol., 35 (2004),pp. 126-139
    [99]
    S.K.Yong, M.Shrivastava, P.Srivastava, et al. Rev. Environ. Contam. Toxicol., 233 (2015),pp. 1-43
    [100]
    E.Repo, J.K.Warchoł, A.Bhatnagar, et al. J. Colloid Interface Sci., 358 (2011),pp. 261-267
    [101]
    C.M.de Moura, J.M.de Moura, N.M.Soares, et al. Chem. Eng. Process., 50 (2011),pp. 351-355
    [102]
    T.Lertwattanaseri, N.Ichikawa, T.Mizoguchi, et al. Carbohydr. Res., 344 (2009),pp. 331-335
    [103]
    X.Chen, H.Yang, Z.Zhong, et al. Green Chem., 19 (2017),pp. 2783-2792
    [104]
    C.Liu, G.Wang, W.Sui, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 4690-4698
    [105]
    Y.-H.Lin, F.-L.Mi, C.-T.Chen, et al. Biomacromolecules, 8 (2007),pp. 146-152
    [106]
    S.Nimesh, M.M.Thibault, M.Lavertu, et al. Mol. Biotechnol., 46 (2010),pp. 182-196
    [107]
    Y.Fang, R.Zhang, B.Duan, et al. ACS Sustain. Chem. Eng., 5 (2017),pp. 2725-2733
    [108]
    S.-B.Lee, G.-T.Jeong Appl. Biochem. Biotechnol., 176 (2015),pp. 1151-1161
    [109]
    K.W.Omari, J.E.Besaw, F.M.Kerton Green Chem., 14 (2012),pp. 1480-1487
    [110]
    Y.Jiang, H.Zang, S.Han, et al. RSC Adv., 6 (2016),pp. 103774-103781
    [111]
    M.Zhang, H.Zang, B.Ma, et al. ChemistrySelect, 2 (2017),pp. 10323-10328
    [112]
    K.H.Seon, P.Mi-Ra, K.Sung-Koo, et al. Energy Technol. (2018)
    [113]
    H.S.Kim, M.-R.Park, S.-K.Kim, et al. Korean J. Chem. Eng., 6 (2018),pp. 1290-1296
    [114]
    W.Hou, L.Liu, H.Shen Carbohydr. Polym., 195 (2018),pp. 267-274
    [115]
    L.Liu, Y.Liu, H.D.Shin, et al. Appl. Microbiol. Biotechnol., 97 (2013),pp. 6149-6158
    [116]
    H.S.Kim, S.-K.Kim, G.-T.Jeong RSC Adv., 8 (2018),pp. 3198-3205
    [117]
    M.-R.Park, H.S.Kim, S.-K.Kim, et al. Fuel Process. Technol., 172 (2018),pp. 115-124
    [118]
    M.-R.Park, S.-K.Kim, G.-T.Jeong J. Ind. Eng. Chem., 61 (2018),pp. 119-123
    [119]
    D.G.A.B.Oonincx, S.van Broekhoven, A.van Huis, et al. PLoS One, 10 (2015),p. e0144601
    [120]
    A.Caligiani, A.Marseglia, G.Leni, et al. Food Res. Int., 105 (2018),pp. 812-820
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return