Yi Peng, Shaowei Chen. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview. Green Energy&Environment, 2018, 3(4): 335-351. doi: 10.1016/j.gee.2018.07.006
Citation: Yi Peng, Shaowei Chen. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview. Green Energy&Environment, 2018, 3(4): 335-351. doi: 10.1016/j.gee.2018.07.006

Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview

doi: 10.1016/j.gee.2018.07.006
  • Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core (elemental composition, core size, etc.) and carbon shell (doping, layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research.

     

  • loading
  • [1]
    M.Shao, Q.Chang, J.P.Dodelet, et al. Chem. Rev., 116 (2016),pp. 3594-3657
    [2]
    J.Wang, F.Xu, H.Jin, et al. Adv. Mater., 29 (2017),p. 1605838
    [3]
    D.D.Zhu, J.L.Liu, S.Z.Qiao Adv. Mater., 28 (2016),pp. 3423-3452
    [4]
    J.Qiao, Y.Liu, F.Hong, et al. Chem. Soc. Rev., 43 (2014),pp. 631-675
    [5]
    N.T.Suen, S.F.Hung, Q.Quan, et al. Chem. Soc. Rev., 46 (2017),pp. 337-365
    [6]
    M.Tahir, L.Pan, F.Idrees, et al. Nano Energy, 37 (2017),pp. 136-157
    [7]
    Z.W.Seh, J.Kibsgaard, C.F.Dickens, et al. Science, 355 (2017)
    [8]
    C.Chen, Y.Kang, Z.Huo, et al. Science, 343 (2014),pp. 1339-1343
    [9]
    H.Over Chem. Rev., 112 (2012),pp. 3356-3426
    [10]
    C.C.McCrory, S.Jung, J.C.Peters, et al. J. Am. Chem. Soc., 135 (2013),pp. 16977-16987
    [11]
    Y.Lee, J.Suntivich, K.J.May, et al. J. Phys. Chem. Lett., 3 (2012),pp. 399-404
    [12]
    W.Sheng, H.A.Gasteiger, Y.Shao-Horn J. Electrochem. Soc., 157 (2010),pp. B1529-B1536
    [13]
    B.Xiong, L.Chen, J.Shi ACS Catal., 8 (2018),pp. 3688-3707
    [14]
    M.I.Jamesh J. Power Sources, 333 (2016),pp. 213-236
    [15]
    Y.Wang, B.Kong, D.Zhao, et al. Nano Today, 15 (2017),pp. 26-55
    [16]
    F.Cheng, J.Chen Chem. Soc. Rev., 41 (2012),pp. 2172-2192
    [17]
    D.U.Lee, P.Xu, Z.P.Cano, et al. J. Mater. Chem. A, 4 (2016),pp. 7107-7134
    [18]
    Z.L.Wang, D.Xu, J.J.Xu, et al. Chem. Soc. Rev., 43 (2014),pp. 7746-7786
    [19]
    D.M.Alonso, S.G.Wettstein, J.A.Dumesic Chem. Soc. Rev., 41 (2012),pp. 8075-8098
    [20]
    Y.J.Wang, N.N.Zhao, B.Z.Fang, et al. Chem. Rev., 115 (2015),pp. 3433-3467
    [21]
    C.H.Cui, S.H.Yu Acc. Chem. Res., 46 (2013),pp. 1427-1437
    [22]
    Z.W.Quan, Y.X.Wang, J.Y.Fang Acc. Chem. Res., 46 (2013),pp. 191-202
    [23]
    B.E.Hayden Acc. Chem. Res., 46 (2013),pp. 1858-1866
    [24]
    D.K.Perivoliotis, N.Tagmatarchis Carbon, 118 (2017),pp. 493-510
    [25]
    N.S.Porter, H.Wu, Z.W.Quan, et al. Acc. Chem. Res., 46 (2013),pp. 1867-1877
    [26]
    J.Y.Chen, B.Lim, E.P.Lee, et al. Nano Today, 4 (2009),pp. 81-95
    [27]
    T.Asefa Acc. Chem. Res., 49 (2016),pp. 1873-1883
    [28]
    Y.P.Zhu, C.Guo, Y.Zheng, et al. Acc. Chem. Res., 50 (2017),pp. 915-923
    [29]
    X.Zou, Y.Zhang Chem. Soc. Rev., 44 (2015),pp. 5148-5180
    [30]
    T.Wang, H.Xie, M.Chen, et al. Nano Energy, 42 (2017),pp. 69-89
    [31]
    Y.Peng, B.Lu, S.Chen Adv. Mater. (2018)
    [32]
    G.H.Wang, J.Hilgert, F.H.Richter, et al. Nat. Mater., 13 (2014),pp. 293-300
    [33]
    X.Pan, Z.Fan, W.Chen, et al. Nat. Mater., 6 (2007),pp. 507-511
    [34]
    Z.Wen, J.Liu, J.Li Adv. Mater., 20 (2008),pp. 743-747
    [35]
    X.Cui, P.Ren, D.Deng, et al. Energy Environ. Sci., 9 (2016),pp. 123-129
    [36]
    H.Fei, Y.Yang, Z.Peng, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 8083-8087
    [37]
    Q.Mo, N.Chen, M.Deng, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 37721-37730
    [38]
    X.Dai, Z.Li, Y.Ma, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 6439-6448
    [39]
    H.Zhang, Z.Ma, J.Duan, et al. ACS Nano, 10 (2016),pp. 684-694
    [40]
    X.Zou, X.Huang, A.Goswami, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 4372-4376
    [41]
    F.Lyu, Q.Wang, H.Zhu, et al. Green Energy Environ., 2 (2017),pp. 151-159
    [42]
    D.Hou, W.Zhou, K.Zhou, et al. J. Mater. Chem. A, 3 (2015),pp. 15962-15968
    [43]
    Z.Zhang, S.Liu, X.Tian, et al. J. Mater. Chem. A, 5 (2017),pp. 10876-10884
    [44]
    J.Chen, G.Xia, P.Jiang, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 13378-13383
    [45]
    J.Su, Y.Yang, G.Xia, et al. Nat. Commun., 8 (2017),p. 14969
    [46]
    P.Jiang, J.Chen, C.Wang, et al. Adv. Mater., 30 (2018)
    [47]
    Y.Zheng, Y.Jiao, L.H.Li, et al. ACS Nano, 8 (2014),pp. 5290-5296
    [48]
    J.K.Norskov, T.Bligaard, J.Rossmeisl, et al. Nat. Chem., 1 (2009),pp. 37-46
    [49]
    L.Yu, X.Pan, X.Cao, et al. J. Catal., 282 (2011),pp. 183-190
    [50]
    E.Skulason, G.S.Karlberg, J.Rossmeisl, et al. Phys. Chem. Chem. Phys., 9 (2007),pp. 3241-3250
    [51]
    L.Zhang, J.Niu, L.Dai, et al. Langmuir, 28 (2012),pp. 7542-7550
    [52]
    J.K.Nørskov, J.Rossmeisl, A.Logadottir, et al. J. Phys. Chem. B, 108 (2004),pp. 17886-17892
    [53]
    E.Skúlason, V.Tripkovic, M.E.Björketun, et al. J. Phys. Chem. C, 114 (2010),pp. 18182-18197
    [54]
    Y.Li, H.Wang, L.Xie, et al. J. Am. Chem. Soc., 133 (2011),pp. 7296-7299
    [55]
    W.Zhou, J.Zhou, Y.Zhou, et al. Chem. Mater., 27 (2015),pp. 2026-2032
    [56]
    R.Parsons Trans. Faraday Soc., 54 (1958),pp. 1053-1063
    [57]
    J.K.Nørskov, T.Bligaard, A.Logadottir, et al. J. Electrochem. Soc., 152 (2005),p. J23
    [58]
    J.Greeley, T.F.Jaramillo, J.Bonde, et al. Nat. Mater., 5 (2006),pp. 909-913
    [59]
    Y.Zheng, Y.Jiao, Y.Zhu, et al. Nat. Commun., 5 (2014),p. 3783
    [60]
    J.Deng, P.Ren, D.Deng, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 2100-2104
    [61]
    W.Pei, S.Zhou, Y.Bai, et al. Carbon, 133 (2018),pp. 260-266
    [62]
    B.Hammer, J.K.Norskov Nature, 376 (1995),p. 238
    [63]
    J.Rossmeisl, Z.W.Qu, H.Zhu, et al. J. Electroanal. Chem., 607 (2007),pp. 83-89
    [64]
    H.Dau, C.Limberg, T.Reier, et al. ChemCatChem, 2 (2010),pp. 724-761
    [65]
    I.C.Man, H.-Y.Su, F.Calle-Vallejo, et al. ChemCatChem, 3 (2011),pp. 1159-1165
    [66]
    R.V.Mom, J.Cheng, M.T.M.Koper, et al. J. Phys. Chem. C, 118 (2014),pp. 4095-4102
    [67]
    P.Liao, J.A.Keith, E.A.Carter J. Am. Chem. Soc., 134 (2012),pp. 13296-13309
    [68]
    I.E.Stephens, A.S.Bondarenko, U.Grønbjerg, et al. Energy Environ. Sci., 5 (2012),pp. 6744-6762
    [69]
    F.Calle-Vallejo, M.T.M.Koper Electrochim. Acta, 84 (2012),pp. 3-11
    [70]
    Y.Jiao, Y.Zheng, M.Jaroniec, et al. J. Am. Chem. Soc., 136 (2014),pp. 4394-4403
    [71]
    B.Lu, T.J.Smart, D.Qin, et al. Chem. Mater., 29 (2017),pp. 5617-5628
    [72]
    F.Calle-Vallejo, J.I.Martinez, J.Rossmeisl Phys. Chem. Chem. Phys., 13 (2011),pp. 15639-15643
    [73]
    I.C.Man, H.Y.Su, F.Calle-Vallejo, et al. ChemCatChem, 3 (2011),pp. 1156-1165
    [74]
    S.Trasatti J. Electroanal. Chem. Interfacial Electrochem., 39 (1972),pp. 163-184
    [75]
    N.D.Lang, W.Kohn Phys. Rev. B, 3 (1971),pp. 1215-1223
    [76]
    F.Tao, M.E.Grass, Y.Zhang, et al. Science, 322 (2008),pp. 932-934
    [77]
    Y.Xu, S.Yin, C.Li, et al. J. Mater. Chem. A, 6 (2018),pp. 1376-1381
    [78]
    Y.Xu, Y.Li, S.Yin, et al. Nanotechnology, 29 (2018)
    [79]
    V.Di Noto, E.Negro, S.Polizzi, et al. ChemSusChem, 5 (2012),pp. 2451-2459
    [80]
    N.Du, C.Wang, R.Long, et al. Nano Res., 10 (2017),pp. 3228-3237
    [81]
    Q.Jin, B.Ren, D.Li, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 31913-31921
    [82]
    G.Zhang, P.Wang, W.T.Lu, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 28566-28576
    [83]
    Z.Wang, S.Xiao, Z.Zhu, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 4048-4055
    [84]
    H.Shao, X.Zhang, H.Huang, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 41945-41954
    [85]
    L.Ai, T.Tian, J.Jiang ACS Sustain. Chem. Eng., 5 (2017),pp. 4771-4777
    [86]
    Y.Hou, Z.Wen, S.Cui, et al. Adv. Funct. Mater., 25 (2015),pp. 872-882
    [87]
    M.Zeng, Y.Liu, F.Zhao, et al. Adv. Funct. Mater., 26 (2016),pp. 4397-4404
    [88]
    Y.Z.Chen, C.Wang, Z.Y.Wu, et al. Adv. Mater., 27 (2015),pp. 5010-5016
    [89]
    D.Deng, L.Yu, X.Chen, et al. Angew. Chem. Int. Ed., 52 (2013),pp. 371-375
    [90]
    S.Zhang, X.Xiao, T.Lv, et al. Appl. Surf. Sci., 446 (2018),pp. 10-17
    [91]
    S.Zhang, Y.Zhang, W.Jiang, et al. Carbon, 107 (2016),pp. 162-170
    [92]
    Z.-Y.Chen, Y.-N.Yu, S.-J.Bao, et al. J Solid State Electr., 21 (2017),pp. 3641-3648
    [93]
    F.Yang, P.Zhao, X.Hua, et al. J. Mater. Chem. A, 4 (2016),pp. 16057-16063
    [94]
    Y.Zhao, J.Zhang, K.Li, et al. J. Mater. Chem. A, 4 (2016),pp. 12818-12824
    [95]
    S.H.Noh, M.H.Seo, X.Ye, et al. J. Mater. Chem. A, 3 (2015),pp. 22031-22034
    [96]
    T.Wang, Q.Zhou, X.Wang, et al. J. Mater. Chem. A, 3 (2015),pp. 16435-16439
    [97]
    Y.Liu, H.Jiang, Y.Zhu, et al. J. Mater. Chem. A, 4 (2016),pp. 1694-1701
    [98]
    G.Zhang, W.Lu, F.Cao, et al. J. Power Sources, 302 (2016),pp. 114-125
    [99]
    W.Yang, L.Chen, X.Liu, et al. Nanoscale, 9 (2017),pp. 1738-1744
    [100]
    Y.Tu, H.Li, D.Deng, et al. Nano Energy, 30 (2016),pp. 877-884
    [101]
    Z.Wang, Y.Lu, Y.Yan, et al. Nano Energy, 30 (2016),pp. 368-378
    [102]
    Y.Su, Y.Zhu, H.Jiang, et al. Nanoscale, 6 (2014),pp. 15080-15089
    [103]
    F.Lei, W.Liu, Y.Sun, et al. Nat. Commun., 7 (2016),p. 12697
    [104]
    J.-S.Li, B.Du, Z.-H.Lu, et al. New J. Chem., 41 (2017),pp. 10966-10971
    [105]
    W.Zhou, T.Xiong, C.Shi, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 8416-8420
    [106]
    J.Lu, W.Zhou, L.Wang, et al. ACS Catal., 6 (2016),pp. 1045-1053
    [107]
    Y.Yang, Z.Lin, S.Gao, et al. ACS Catal., 7 (2016),pp. 469-479
    [108]
    H.-X.Zhong, J.Wang, Q.Zhang, et al. Adv. Sustain. Syst., 1 (2017)
    [109]
    Y.Shen, Y.Zhou, D.Wang, et al. Adv. Energy Mater., 8 (2018)
    [110]
    H.Guo, N.Youliwasi, L.Zhao, et al. Appl. Surf. Sci., 435 (2018),pp. 237-246
    [111]
    A.Sivanantham, S.Shanmugam ChemElectroChem, 5 (2018),pp. 1937-1943
    [112]
    L.Zeng, X.Cui, L.Chen, et al. Carbon, 114 (2017),pp. 347-355
    [113]
    X.Zhong, Y.Qin, X.Chen, et al. Carbon, 114 (2017),pp. 740-748
    [114]
    J.Long, R.Li, X.Gou Catal. Commun., 95 (2017),pp. 31-35
    [115]
    S.Saha, A.K.Ganguli ChemistrySelect, 2 (2017),pp. 1630-1636
    [116]
    Y.Yang, Z.Lun, G.Xia, et al. Energy Environ. Sci., 8 (2015),pp. 3563-3571
    [117]
    J.Yu, Y.Zhong, W.Zhou, et al. J. Power Sources, 338 (2017),pp. 26-33
    [118]
    G.Fu, Y.Chen, Z.Cui, et al. Nano Lett., 16 (2016),pp. 6516-6522
    [119]
    B.Bayatsarmadi, Y.Zheng, V.Russo, et al. Nanoscale, 8 (2016),pp. 18507-18515
    [120]
    B.Du, Q.-T.Meng, J.-Q.Sha, et al. N. J. Chem., 42 (2018),pp. 3409-3414
    [121]
    S.H.Noh, M.H.Seo, J.Kang, et al. NPG Asia Mater., 8 (2016),p. e312
    [122]
    X.Duan, J.Xu, Z.Wei, et al. Adv. Mater., 29 (2017)
    [123]
    L.Dai, Y.Xue, L.Qu, et al. Chem. Rev., 115 (2015),pp. 4823-4892
    [124]
    J.P.Paraknowitsch, A.Thomas Energy Environ. Sci., 6 (2013),p. 2839
    [125]
    D.-W.Wang, D.Su Energy Environ. Sci., 7 (2014),p. 576
    [126]
    L.Yang, W.Zhou, J.Jia, et al. Carbon, 122 (2017),pp. 710-717
    [127]
    J.Deng, L.Yu, D.Deng, et al. J. Mater. Chem. A, 1 (2013),p. 14868
    [128]
    M.Tavakkoli, T.Kallio, O.Reynaud, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 4535-4538
    [129]
    J.Yu, W.Zhou, T.Xiong, et al. Nano Res., 10 (2017),pp. 2599-2609
    [130]
    H.Jin, J.Wang, D.Su, et al. J. Am. Chem. Soc., 137 (2015),pp. 2688-2694
    [131]
    A.Aijaz, J.Masa, C.Rosler, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 4087-4091
    [132]
    J.Hou, Y.Sun, Y.Wu, et al. Adv. Funct. Mater., 28 (2018),p. 1704447
    [133]
    H.Zhuang, Y.Xie, H.Tan, et al. Electrochim. Acta, 262 (2018),pp. 18-26
    [134]
    Y.Ma, X.Dai, M.Liu, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 34396-34404
    [135]
    X.Yan, L.Tian, M.He, et al. Nano Lett., 15 (2015),pp. 6015-6021
    [136]
    X.Yan, L.Tian, X.Chen J. Power Sources, 300 (2015),pp. 336-343
    [137]
    Z.Wen, S.Ci, F.Zhang, et al. Adv. Mater., 24 (2012),pp. 1399-1404
    [138]
    Y.Hou, T.Huang, Z.Wen, et al. Adv. Energy Mater., 4 (2014),p. 1400337
    [139]
    Q.Wang, Y.Lei, Z.Chen, et al. J. Mater. Chem. A, 6 (2018),pp. 516-526
    [140]
    X.Chen, J.Xiao, J.Wang, et al. Chem. Sci., 6 (2015),pp. 3262-3267
    [141]
    R.A.Sidik, A.B.Anderson J. Phys. Chem. B, 110 (2006),pp. 936-941
    [142]
    J.Yang, G.Zhu, Y.Liu, et al. Adv. Funct. Mater., 26 (2016),pp. 4712-4721
    [143]
    X.Zhang, S.Liu, Y.Zang, et al. Nano Energy, 30 (2016),pp. 93-102
    [144]
    R.Li, Y.Dai, B.Chen, et al. J. Mater. Chem. A, 307 (2016),pp. 1-10
    [145]
    Y.Hao, Y.Xu, W.Liu, et al. Mater. Horiz., 5 (2018),pp. 108-115
    [146]
    J.Tian, Q.Liu, A.M.Asiri, et al. J. Am. Chem. Soc., 136 (2014),pp. 7587-7590
    [147]
    Q.Liu, J.Tian, W.Cui, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 6710-6714
    [148]
    E.J.Popczun, C.G.Read, C.W.Roske, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 5427-5430
    [149]
    Q.Jin, B.Ren, D.Li, et al. Nano Energy, 49 (2018),pp. 14-22
    [150]
    W.Xia, R.Zou, L.An, et al. Energy Environ. Sci., 8 (2015),pp. 568-576
    [151]
    Z.Li, M.Shao, L.Zhou, et al. Adv. Mater., 28 (2016),pp. 2337-2344
    [152]
    Y.V.Kaneti, J.Tang, R.R.Salunkhe, et al. Adv. Mater., 29 (2017),p. 1604898
    [153]
    J.Liu, D.Zhu, C.Guo, et al. Adv. Energy Mater., 7 (2017),p. 1700518
    [154]
    A.A.Gewirth, J.A.Varnell, A.M.DiAscro Chem. Rev., 118 (2018),pp. 2313-2339
    [155]
    M.Zhou, H.L.Wang, S.Guo Chem. Soc. Rev., 45 (2016),pp. 1273-1307
    [156]
    B.Y.Guan, X.Y.Yu, H.B.Wu, et al. Adv. Mater., 29 (2017),p. 1703614
    [157]
    H.B.Yang, J.Miao, S.F.Hung, et al. Sci. Adv., 2 (2016),p. e1501122
    [158]
    G.Fu, Z.Cui, Y.Chen, et al. Adv. Energy Mater., 7 (2017),p. 1601172
    [159]
    X.Han, X.Wu, C.Zhong, et al. Nano Energy, 31 (2017),pp. 541-550
    [160]
    J.Zhang, Z.Zhao, Z.Xia, et al. Nat. Nanotechnol., 10 (2015),pp. 444-452
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return