Yangcheng Jiang, Zhen Liu, Jili Song, Ikwhang Chang, Jianhuang Zeng. Preparation and characterization of bimetallic Pt^Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT. Green Energy&Environment, 2018, 3(4): 360-367. doi: 10.1016/j.gee.2018.07.005
Citation: Yangcheng Jiang, Zhen Liu, Jili Song, Ikwhang Chang, Jianhuang Zeng. Preparation and characterization of bimetallic Pt^Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT. Green Energy&Environment, 2018, 3(4): 360-367. doi: 10.1016/j.gee.2018.07.005

Preparation and characterization of bimetallic Pt^Ni-P/CNT catalysts via galvanic displacement reaction on electrolessly-plated Ni-P/CNT

doi: 10.1016/j.gee.2018.07.005
  • Platinum-based bimetallic catalysts have broad applications in polymer electrolyte membrane fuel cells and water splitting. In this work, galvanic displacement reaction was employed to prepare Pt^Ni-P/CNT catalysts using electrolessly-plated Ni-P/CNT. These catalysts were extensively characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Catalytic activities towards methanol oxidation and hydrogen evolution reactions were evaluated and benchmarked with a commercial Pt/C catalyst. Uniform dispersion of Pt on Ni-P particles led to high Pt utilization, and the electrochemical surface area of Pt^Ni-P/CNT with 12.1% Pt loading was found to be 126 m2 g−1, higher than that of a commercial Pt/C (77.9 m2 g−1). The Tafel slopes for the Pt^Ni-P/CNT catalysts were also found to be smaller than that of Pt/C indicating faster kinetics for hydrogen evolution reaction.

     

  • loading
  • [1]
    C.Lamy, A.Lima, V.LeRhun, et al. J. Power Sources, 105 (2002),pp. 283-296
    [2]
    Z.P.Li, M.W.Li, M.J.Han, et al. J. Power Sources, 268 (2014),pp. 824-830
    [3]
    F.Vigier, C.Coutanceau, A.Perrard, et al. J. Appl. Electrochem., 34 (2004),pp. 439-446
    [4]
    Y.F.Wang, D.Y.C.Leung, J.Xuan, et al. Renew. Sustain. Energy Rev., 65 (2016),pp. 961-977
    [5]
    R.N.Singh, R.Awasthi, C.S.Sharma Int. J. Electrochem. Sci., 9 (2014),pp. 5607-5639
    [6]
    Y.Q.Kang, F.M.Li, S.N.Li, et al. Nano Res., 9 (12),pp. 3893-3902
    [7]
    Q.Xue, G.R.Xu, R.D.Mao, et al. J. Energy. Chem., 26 (2017),pp. 1153-1159
    [8]
    S.De, J.G.Zhang, R.Luque, et al. Energy Environ. Sci., 9 (2016),pp. 3314-3347
    [9]
    H.Li, W.Z.Wang, Z.Y.Gong, et al. J. Phys. Chem. Solids, 80 (2015),pp. 22-25
    [10]
    J.F.Chang, L.G.Feng, C.P.Liu, et al. Energy Environ. Sci., 7 (2014),pp. 1628-1632
    [11]
    J.F.Chang, L.G.Feng, C.P.Liu, et al. ChemSusChem, 8 (2015),pp. 3340-3347
    [12]
    J.F.Chang, L.G.Feng, C.P.Liu, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 122-126
    [13]
    X.Wu, Z.Liu, Y.C.Jiang, et al. J. Mater. Sci., 52 (2017),pp. 8432-8443
    [14]
    X.Wu, Z.Liu, J.H.Zeng, et al. ChemElectroChem, 4 (2017),pp. 109-114
    [15]
    J.Wang, F.Xu, H.Y.Jin, et al. Adv. Mater., 29 (2017),p. 1605838
    [16]
    B.-W.Ahn, T.-Y.Kim, S.-H.Kim, et al. Appl. Surf. Sci., 432 (2018),pp. 183-189
    [17]
    L.Wan, J.F.Zhang, Y.Q.Chen, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 20515-20522
    [18]
    G.R Xu, J.Bai, L.Yao, et al. ACS Catal., 7 (2017),pp. 452-458
    [19]
    G.R.Xu, J.Bai, J.X.Jiang, et al. Chem. Sci., 8 (2017),pp. 8411-8418
    [20]
    J.W.Zhou, J.Jia, J.Lu, et al. Nano Energy, 28 (2016),pp. 29-43
    [21]
    J.W.Chen, J.Wang, J.D.Chen, et al. J. Mater. Sci., 52 (2017),pp. 13064-13077
    [22]
    R.Chattot, T.Asset, J.Drnec, et al. Nano Lett., 17 (2017),pp. 2447-2453
    [23]
    L.Dubau, T.Asset, R.Chattot, et al. ACS Catal., 5 (2015),pp. 5333-5341
    [24]
    J.R.Kitchin, J.K.Norskov, M.A.Barteau, et al. J. Chem. Phys., 120 (2004),pp. 10240-10246
    [25]
    A.Hadipour, S.M.Monirvaghefi, M.E.Bahrololoom Surf. Eng., 31 (2014),pp. 399-405
    [26]
    D.-G.Kim, J.-W.Kim, J.-W.Yoon, et al. Surf. Interface Anal., 38 (2006),pp. 440-443
    [27]
    J.Choi, J.-H.Jang, C.-W.Roh, et al. Appl. Catal. B, 225 (2018),pp. 530-537
    [28]
    G.J.Wang, Y.Z.Gao, Z.B.Wang, et al. J. Power Sources, 195 (2010),pp. 185-189
    [29]
    M.A.Carcia-Contreras, S.M.Fernandez-Valverda, J.R.Vargas-Garcia, et al. Int. J. Hydrogen Energy, 33 (2008),pp. 6672-6680
    [30]
    D.P He, L.B.Zhang, D.S.He, et al. Nat. Commun., 7 (2016),p. 12362
    [31]
    H.B.EI-Deeb, M.Bron J. Power Sources, 275 (2015),pp. 893-900
    [32]
    A.Pozio, M.D.Francesco, A.Cemmi, et al. J. Power Sources, 105 (2002),pp. 13-19
    [33]
    J.Deng, P.J.Ren, D.H.Deng, et al. Energy Environ. Sci., 7 (2014),pp. 1919-1923
    [34]
    Y.H.Su, Y.H.Zhu, H.L.Jiang, et al. Nanoscale, 6 (2014),pp. 15080-15089
    [35]
    E.J.Popczun, J.R.McKone, C.G.Read, et al. J. Am. Chem. Soc., 135 (2013),pp. 9267-9270
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return