Chunjie Li, You Xu, Yinghao Li, Hongjie Yu, Shuli Yin, Hairong Xue, Xiaonian Li, Hongjing Wang, Liang Wang. Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy&Environment, 2018, 3(4): 352-359. doi: 10.1016/j.gee.2018.07.004
Citation: Chunjie Li, You Xu, Yinghao Li, Hongjie Yu, Shuli Yin, Hairong Xue, Xiaonian Li, Hongjing Wang, Liang Wang. Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy&Environment, 2018, 3(4): 352-359. doi: 10.1016/j.gee.2018.07.004

Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity

doi: 10.1016/j.gee.2018.07.004
  • Platinum (Pt)-based multi-metallic nanostructures show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. Herein, we report a simple, one-step surfactant-directed synthetic strategy to directly synthesize tri-metallic PtPdNi mesoporous nanospheres (PtPdNi MNs) in a high yield. The synthesis could be accomplished in aqueous solution at mild reaction temperature (40 °C) without needing any organic solvent, yielding well-dispersed PtPdNi MNs with uniform shape and narrow size distribution. Benefitting from their unique mesoporous and highly open structure and tri-metallic composition, the as-synthesized PtPdNi MNs demonstrate superior catalytic activity and stability for ORR in acidic solution in comparison with PtPdNi nanodendrites (PtPdNi NDs), PtPd MNs and commercial Pt/C catalyst. The present approach may open a reliable path to the design of advanced electrocatalysts with desired performance.

     

  • loading
  • [1]
    I.E.L.Stephens, J.Rossmeisl, I.Chorkendorff Science, 354 (2016),pp. 1378-1379
    [2]
    B.Cai, S.Henning, J.Herranz, et al. Adv. Energy Mater., 7 (2017),p. 1700548
    [3]
    M.Li, Z.Zhao, T.Cheng, et al. Science, 354 (2016),pp. 1414-1419
    [4]
    Y.Nie, L.Li, Z.Wei Chem. Soc. Rev., 44 (2015),pp. 2168-2201
    [5]
    G.-R.Xu, C.-C.Han, Y.-Y.Zhu, et al. Adv. Mater. Interfaces, 5 (2018),p. 1701322
    [6]
    Q.Xue, G.Xu, R.Mao, et al. J. Energy Chem., 26 (2017),pp. 1153-1159
    [7]
    L.Bu, N.Zhang, S.Guo, et al. Science, 354 (2016),pp. 1410-1414
    [8]
    K.Jiang, D.Zhao, S.Guo, et al. Sci. Adv., 3 (2017)
    [9]
    M.Shao, Q.Chang, J.P.Dodelet, et al. Chem. Rev., 116 (2016),pp. 3594-3657
    [10]
    G.-R.Xu, B.Wang, J.-Y.Zhu, et al. ACS Catal., 6 (2016),pp. 5260-5267
    [11]
    Z.W.Seh, J.Kibsgaard, C.F.Dickens, et al. Science, 355 (2017)
    [12]
    M.Escudero-Escribano, P.Malacrida, M.H.Hansen, et al. Science, 352 (2016),pp. 73-76
    [13]
    S.Guo, S.Zhang, S.Sun Angew. Chem. Int. Ed., 52 (2013),pp. 8526-8544
    [14]
    Y.Jiao, Y.Zheng, M.Jaroniec, et al. Chem. Soc. Rev., 44 (2015),pp. 2060-2086
    [15]
    G.-R.Xu, S.-H.Han, Z.-H.Liu, et al. J. Power Sources, 306 (2016),pp. 587-592
    [16]
    Y.Xu, B.Zhang Chem. Soc. Rev., 43 (2014),pp. 2439-2450
    [17]
    C.Zhu, D.Du, A.Eychmuller, et al. Chem. Rev., 115 (2015),pp. 8896-8943
    [18]
    V.Malgras, H.Ataee-Esfahani, H.Wang, et al. Adv. Mater., 28 (2016),pp. 993-1010
    [19]
    H.Duan, C.Xu Electrochim. Acta, 152 (2015),pp. 417-424
    [20]
    Y.Zhang, L.Zhao, J.Walton, et al. Int. J. Hydrogen Energy, 42 (2017),pp. 17112-17121
    [21]
    K.Cai, J.Liu, H.Zhang, et al. Chem. Eur J., 21 (2015),pp. 7556-7561
    [22]
    P.Song, L.-P.Mei, A.-J.Wang, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 1645-1653
    [23]
    A.-J.Wang, L.Liu, X.-X.Lin, et al. Electrochim. Acta, 245 (2017),pp. 883-892
    [24]
    X.Yang, L.T.Roling, M.Vara, et al. Nano Lett., 16 (2016),pp. 6644-6649
    [25]
    M.Luo, Y.Sun, X.Zhang, et al. Adv. Mater., 30 (2018),p. 1705515
    [26]
    D.Y.Chung, S.W.Jun, G.Yoon, et al. J. Am. Chem. Soc., 137 (2015),pp. 15478-15485
    [27]
    X.Zhao, S.Chen, Z.Fang, et al. J. Am. Chem. Soc., 137 (2015),pp. 2804-2807
    [28]
    X.Huang, Z.Zhao, L.Cao, et al. Science, 348 (2015),pp. 1230-1234
    [29]
    V.Beermann, M.Gocyla, S.Kuhl, et al. J. Am. Chem. Soc., 139 (2017),pp. 16536-16547
    [30]
    D.Wang, H.L.Xin, R.Hovden, et al. Nat. Mater., 12 (2012),p. 81
    [31]
    E.Pizzutilo, J.Knossalla, S.Geiger, et al. Adv. Energy Mater., 7 (2017),p. 1700835
    [32]
    Z.Zhang, Z.Luo, B.Chen, et al. Adv. Mater., 28 (2016),pp. 8712-8717
    [33]
    B.-A.Lu, T.Sheng, N.Tian, et al. Nano Energy, 33 (2017),pp. 65-71
    [34]
    J.Lai, S.Guo Small, 13 (2017),p. 1702156
    [35]
    J.Li, H.-M.Yin, X.-B.Li, et al. Nat. Energy, 2 (2017),p. 17111
    [36]
    H.Zhu, S.Zhang, S.Guo, et al. J. Am. Chem. Soc., 135 (2013),pp. 7130-7133
    [37]
    Y.W.Lee, M.Im, J.W.Hong, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 44018-44026
    [38]
    J.Park, M.Kanti Kabiraz, H.Kwon, et al. ACS Nano, 11 (2017),pp. 10844-10851
    [39]
    M.Lokanathan, I.M.Patil, M.Navaneethan, et al. Nano Energy, 43 (2018),pp. 219-227
    [40]
    B.Jiang, C.Li, M.Imura, et al. Adv. Sci., 2 (2015),p. 1500112
    [41]
    B.Jiang, C.Li, V.Malgras, et al. J. Mater. Chem. A, 3 (2015),pp. 18053-18058
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return