Chuang Fan, Zihan Huang, Xianyu Hu, Zhaoping Shi, Tianyang Shen, Yawen Tang, Xiaojun Wang, Lin Xu. Freestanding Pt nanosheets with high porosity and improved electrocatalytic performance toward the oxygen reduction reaction. Green Energy&Environment, 2018, 3(4): 310-317. doi: 10.1016/j.gee.2018.05.002
Citation: Chuang Fan, Zihan Huang, Xianyu Hu, Zhaoping Shi, Tianyang Shen, Yawen Tang, Xiaojun Wang, Lin Xu. Freestanding Pt nanosheets with high porosity and improved electrocatalytic performance toward the oxygen reduction reaction. Green Energy&Environment, 2018, 3(4): 310-317. doi: 10.1016/j.gee.2018.05.002

Freestanding Pt nanosheets with high porosity and improved electrocatalytic performance toward the oxygen reduction reaction

doi: 10.1016/j.gee.2018.05.002
  • Because of the intriguing electronic properties, high specific surface areas and confinement effect, two-dimensional (2D) noble metal nanosheets usually exhibit fascinating physicochemical properties and thus hold great promises in fuel cell devices and beyond. Herein, 2D porous Pt nanosheets composed by interweaved ultrathin nanowires are successfully fabricated via a facile NaCl-templated process. Controlled experiments demonstrate that the adoption of NaCl and appropriate ratio of NaCl and Pt precursor are indispensable for the formation of porous Pt nanosheets. Impressively, the cost-effective NaCl template can be recyclable through a simple recrystallization procedure, which may greatly reduce the synthetic cost. By virtue of their structural merits, including high porosity, 2D anisotropy and abundant defects, the resultant porous Pt nanosheets exhibit superior activity and enhanced stability towards the oxygen reduction reaction (ORR) compared to the commercial Pt black in alkaline medium. The present study not only offers a high-performance electrocatalyst for fuel cell devices, but also provides a new perspective toward the rational synthesis of 2D noble metal nanosheets with high porosity and diverse functionalities.

     

  • loading
  • [1]
    R.Cao, R.Thapa, H.Kim, et al. Nat. Commun., 4 (2013),pp. 2076-2083
    [2]
    P.Chen, T.Zhou, L.Xing, et al. Angew. Chem. Int. Ed., 56 (2017),pp. 610-614
    [3]
    F.Meng, H.Zhong, B.Di, et al. J. Am. Chem. Soc., 138 (2016),pp. 10226-10231
    [4]
    L.Dai, M.Liu, Y.Song, et al. Nano Energy, 27 (2016),pp. 185-195
    [5]
    X.Wang, M.Vara, M.Luo, et al. J. Am. Chem. Soc., 137 (2015),pp. 15036-15042
    [6]
    H.Cheng, J.M.Chen, Q.J.Li, et al. Chem. Commun., 53 (2017),pp. 11596-11599
    [7]
    J.Guo, Y.Li, Y.Cheng, et al. ACS Nano, 11 (2017),pp. 8379-8386
    [8]
    J.Park, M.K.Kanti, H.Kwon, et al. ACS Nano, 11 (2017),pp. 10844-10851
    [9]
    H.Wang, S.Yin, Y.Li, et al. J. Mater. Chem. A, 6 (2018),pp. 3642-3648
    [10]
    D.H.Lim, J.Wilcox J. Phys. Chem. C, 116 (2016),pp. 3653-3660
    [11]
    X.Huang, Z.Zhao, L.Cao, et al. Science, 348 (2015),pp. 1230-1234
    [12]
    H.Wang, S.Yin, Y.Xu, et al. J. Mater. Chem. A, 6 (2018),pp. 8662-8668
    [13]
    Y.C.Shi, L.P.Mei, A.J.Wang, et al. J. Colloid Interface Sci., 504 (2017),pp. 363-370
    [14]
    X.Qiu, H.Zhang, P.Wu, et al. Adv. Funct. Mater., 27 (2017),p. 201603852
    [15]
    W.Wang, Y.Zhao, Y.Ding Nanoscale, 7 (2015),pp. 11934-11939
    [16]
    Z.Zhang, Y.Liu, B.Chen, et al. Adv. Mater., 28 (2016),pp. 10282-10286
    [17]
    J.Wang, W.Zeng, Z.Wang Ceram. Int., 42 (2016),pp. 4567-4573
    [18]
    W.Xiao, M.Gong, L.Han, et al. J. Mater. Chem. A, 5 (2017),pp. 9867-9872
    [19]
    X.Weng, Q.Liu, J.-J.Feng, et al. J. Colloid Interface Sci., 504 (2017),pp. 680-687
    [20]
    Y.Jin, H.Wang, J.Li, et al. Adv. Mater., 28 (2016),pp. 3785-3790
    [21]
    Z.Sun, T.Liao, Y.Dou, et al. Nat. Commun., 5 (2014),pp. 3813-3821
    [22]
    H.Wang, S.Ishihara, K.Ariga, et al. J. Am. Chem. Soc., 134 (2012),pp. 10819-18021
    [23]
    Z.Q.Liu, Q.Z.Xu, J.Y.Wang, et al. Int. J. Hydrogen Energy, 38 (2013),pp. 6657-6662
    [24]
    G.Zhou, Q.Yang, X.Guo, et al. Int. J. Hydrogen Energy, 43 (2018),pp. 9326-9333
    [25]
    W.Liang, L.Li, J.Hou, et al. Chem. Sci., 9 (2018),pp. 3508-3516
    [26]
    N.Gao, Y.Guo, S.Zhou, et al. J. Phys. Chem. C, 121 (2017),pp. 12261-12269
    [27]
    Y.C.Lin, D.Kim, Z.Li, et al. Nanoscale, 9 (2017),pp. 1213-1220
    [28]
    W.Hong, Y.Fang, J.Wang, et al. J. Power Sources, 248 (2014),pp. 553-559
    [29]
    S.-S.Li, A.-J.Wang, Y.-Y.Hu, et al. J. Mater. Chem. A, 2 (2014),pp. 18177-18183
    [30]
    X.Zheng, X.Cao, X.Li, et al. Nanoscale, 9 (2016),pp. 1059-1067
    [31]
    K.Huang, Z.Xing, L.Wang, et al. J. Mater. Chem. A, 6 (2017),pp. 434-442
    [32]
    L.Wang, Y.Yamauchi J. Am. Chem. Soc., 135 (2013),pp. 16762-16765
    [33]
    Y.Chen, G.Fu, Y.Li, et al. J. Mater. Chem. A, 5 (2017),pp. 3774-3779
    [34]
    Y.Li, Y.Li, E.Zhu, et al. J. Am. Chem. Soc., 134 (2012),pp. 12326-12329
    [35]
    L.Dai, S.Mo, Q.Qin, et al. Small, 12 (2016),pp. 1572-1577
    [36]
    Y.Ma, W.Gao, H.Shan, et al. Adv. Mater., 29 (2017)
    [37]
    C.Zhang, S.N.Oliaee, Y.H.Sang, et al. Nano Lett., 16 (2015),pp. 164-169
    [38]
    H.W.Liang, X.Cao, F.Zhou, et al. Adv. Mater., 23 (2011),pp. 1467-1471
    [39]
    X.Jiang, G.Fu, X.Wu, et al. Nano Res., 11 (2018),pp. 499-510
    [40]
    L.Wu, Z.Liu, M.Xu, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 6805-6813
    [41]
    X.Zhang, Y.Liu, J.Gao, et al. J. Mater. Chem. A, 6 (2018),pp. 7977-7987
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return