Shuang Jiao, Yiming Zhao, Chensha Li, Binsong Wang, Yang Qu. Recyclable adsorbent of BiFeO3/Carbon for purifying industrial dye wastewater via photocatalytic reproducible. Green Energy&Environment, 2019, 4(1): 66-74. doi: 10.1016/j.gee.2018.05.001
Citation: Shuang Jiao, Yiming Zhao, Chensha Li, Binsong Wang, Yang Qu. Recyclable adsorbent of BiFeO3/Carbon for purifying industrial dye wastewater via photocatalytic reproducible. Green Energy&Environment, 2019, 4(1): 66-74. doi: 10.1016/j.gee.2018.05.001

Recyclable adsorbent of BiFeO3/Carbon for purifying industrial dye wastewater via photocatalytic reproducible

doi: 10.1016/j.gee.2018.05.001
  • It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH = 2–12, which can imply its universal utilization. The prepared BiFeO3/Carbon nanocomposites have also displayed excellent capacities (over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO3/Carbon can be a suitable material used in treating industrial dye wastewater potentially.

     

  • loading
  • [1]
    T.Tao, K.Xin Nature, 511 (2014),pp. 527-528
    [2]
    R.D.G.Franca, A.Vieira, A.M.T.Mata, et al. Water Res., 85 (2015),pp. 327-336
    [3]
    Y.Y.Wang, Y.X.Liu, H.H.Lu, et al. J. Solid State Chem., 261 (2018),pp. 53-61
    [4]
    L.Sun, C.G.Tian, L.Wang, et al. J. Mater. Chem., 21 (2011),pp. 7232-7239
    [5]
    T.B.Soltani, M.H.Entezari Chem. Eng. J., 223 (2013),pp. 145-154
    [6]
    Y.F.Li, X.Z.Yuan, Z.B.Wu, et al. Chem. Eng. J., 303 (2016),pp. 636-645
    [7]
    J.Wu, L.M.Ma, Y.L.Chen, et al. Water Res., 92 (2016),pp. 140-148
    [8]
    L.L.Xu, X.F.Li, J.Q.Ma, et al. Appl. Catal. A Gen., 485 (2014),pp. 91-98
    [9]
    L.Fu, B.Du, F.Wang, et al. Environ. Sci. Technol., 51 (2001),pp. 13614-13623
    [10]
    S.Bharathkumar, M.Sakar, S.Balakumar J. Phys. Chem. C, 120 (2016),pp. 18811-18821
    [11]
    F.Chen, Q.Yang, F.B.Yao, et al. J. Catal., 352 (2017),pp. 160-170
    [12]
    Y.Qu, W.Zhou, Z.Y.Ren, et al. J. Mater. Chem., 22 (2012),pp. 16471-16476
    [13]
    Z.G.Chen, J.Zeng, J.Di, et al. Green Energy Environ., 2 (2017),pp. 124-133
    [14]
    F.Gao, X.Y.Chen, K.B.Yin, et al. Adv. Mater., 19 (2007),pp. 2889-2892
    [15]
    D.P.Dutta, O.D.Jayakumar, A.K.Tyagi, et al. Nanoscale, 2 (2010),pp. 1149-1154
    [16]
    M.Humayun, A.Zada, Z.J.Li, et al. Appl. Catal. B, 180 (2016),pp. 219-226
    [17]
    N.Wang, L.H.Zhu, M.Lei, et al. ACS Catal., 1 (2011),pp. 1193-1202
    [18]
    X.F.Bai, J.Wei, B.B.Tian, et al. J. Phys. Chem. C, 120 (2016),pp. 3595-3601
    [19]
    W.Luo, L.H.Zhu, N.Wang, et al. Environ. Sci. Technol., 44 (2010),pp. 1786-1791
    [20]
    Y.D.Mun, M.J.Kim, S.A.Park, et al. Appl. Catal. B, 222 (2018),pp. 191-199
    [21]
    C.Kannan, K.Muthuraja, M.R.Devi, et al. Mater, 244 (2013),pp. 10-20
    [22]
    P.Raizada, P.Singh, A.Kumar, et al. Appl. Catal. A Gen., 486 (2014),pp. 159-169
    [23]
    S.Li, J.M.Zhang, M.G.Kibria, et al. Chem. Commun., 49 (2013),pp. 5856-5858
    [24]
    L.Wu, W.B.Sui, C.H.Dong, et al. Appl. Surf. Sci., 384 (2016),pp. 368-375
    [25]
    R.Han, J.Zhang, P.Han, et al. Chem. Eng. J., 145 (2009),pp. 496-504
    [26]
    S.Zhang, H.Yang, H.Huang, et al. J. Mater. Chem., 5 (2017),pp. 15913-15922
    [27]
    W.Zhong, T.Jiang, Y.L.Dang, et al. Appl. Catal. A Gen., 549 (2018),pp. 302-309
    [28]
    R.Yu, Y.Shi, D.Yang, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 21809-21819
    [29]
    Y.Q.Wang, M.Y.Zhu, Y.C.Li, et al. Green Energy Environ., 3 (2018),pp. 172-178
    [30]
    D.D.Wang, F.Y.Jia, H.Wang, et al. J. Colloid Interf. Sci., 519 (2018),pp. 273-284
    [31]
    M.S.Chiou, H.Y.Li Chemosphere, 50 (2003),pp. 1095-1105
    [32]
    I.Langmuir J. Am. Chem. Soc., 40 (1918),pp. 1361-1403
    [33]
    E.Bulut, M.Ozacar, I.A.Sengil J. Hazard Mater., 154 (2008),pp. 613-622
    [34]
    Y.C.Mou, H.Yang, Z.L.Xu ACS Sustain. Chem. Eng., 5 (2017),pp. 2339-2349
    [35]
    L.Xiong, Y.Yang, J.X.Mai, et al. Chem. Eng. J., 156 (2010),pp. 313-320
    [36]
    Y.He, D.B.Jiang, J.Chen, et al. J. Colloid Interface Sci., 510 (2018),pp. 207-220
    [37]
    Z.Q.Yu, S.S.C.Chuang J. Phys. Chem. C, 111 (2007),pp. 13813-13820
    [38]
    Z.X.Li, Y.Shen, C.Yang, et al. J. Mater. Chem., 1 (2013),pp. 823-829
    [39]
    M.Humayun, Y.Qu, F.Raziq, et al. Environ. Sci. Technol., 22 (2016),pp. 13600-13610
    [40]
    N.Sun, Y.Qu, S.Chen, et al. Environ. Sci. Nano, 4 (2017),pp. 1147-1154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (182) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return