Yan Jia, Qiaoyi Tan, Heyun Sun, Yupeng Zhang, Hongshan Gao, Renman Ruan. Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps. Green Energy&Environment, 2019, 4(1): 29-37. doi: 10.1016/j.gee.2018.04.001
Citation: Yan Jia, Qiaoyi Tan, Heyun Sun, Yupeng Zhang, Hongshan Gao, Renman Ruan. Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps. Green Energy&Environment, 2019, 4(1): 29-37. doi: 10.1016/j.gee.2018.04.001

Sulfide mineral dissolution microbes: Community structure and function in industrial bioleaching heaps

doi: 10.1016/j.gee.2018.04.001
  • Heap bioleaching is one of the most clean and economical processes for recovery of low-grade and complex ores, because the sulfide minerals are natural habitats for acidophiles capable of iron- and sulfur-oxidation. The most exciting advances in heap bioleaching are occurring in the field of microbiology, especially with the development of advanced molecular biology approaches. These chemolithotrophic microorganisms living in the acid mine environment fix N 2 and CO2 and obtain energy for growth from soluble ferrous iron and reduced inorganic sulfur compounds during oxidation of sulfide minerals. The ferric iron as oxidant and sulfuric acid are a result of microbial activity and provide favorable conditions for the dissolution of sulfide minerals. Various microbial consortia were applied successfully in commercial bioleaching heaps around the world, and microbial community and activity were adapted related to the local climatic conditions, ore characteristics and engineering configuration. This review focuses on diversity of bioleaching microbes, their role in heap bioleaching processes, their community structure and function in industrial heaps and the relation to the ore characteristics and the engineering configuration, to give implications for optimizing leaching efficiency of heap bioleaching.

     

  • loading
  • [1]
    H.R.Watling Minerals, 5 (2014),pp. 1-60
    [2]
    J.A.Brierley Hydrometallurgy, 94 (2008),pp. 2-7
    [3]
    D.W.Shiers, D.M.Collinson, H.R.Watling Res. Microbiol., 167 (2016),pp. 576-586
    [4]
    E.M.Domic
    [5]
    Y.Jia, R.Ruan, Y.Geng, et al.
    [6]
    Z.Tu, C.Guo, T.Zhang, et al. Hydrometallurgy, 167 (2016),pp. 58-65
    [7]
    A.Schippers
    [8]
    D.E.Rawlings, D.B.Johnson Microbiology, 153 (2007),pp. 315-324
    [9]
    L.X.Chen, L.N.Huang, C.Méndez-García, et al. Curr. Opin. Biotechnol., 38 (2016),pp. 150-158
    [10]
    D.K.Newman Science, 327 (2010),pp. 793-794
    [11]
    C.Bakeraustin, M.Dopson Trends Microbiol., 15 (2007),p. 165
    [12]
    D.B.Johnson, K.B.Hallberg Res. Microbiol., 154 (2003),pp. 466-473
    [13]
    B.J.Baker, J.F.Banfield FEMS Microbiol. Ecol., 44 (2003),pp. 139-152
    [14]
    J.P.Cárdenas, R.Quatrini, D.S.Holmes Res. Microbiol., 167 (2016),pp. 529-538
    [15]
    M.L.Sogin, H.G.Morrison, J.A.Huber, et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 12115-12120
    [16]
    A.Schippers, S.Hedrich, J.Vasters, et al.
    [17]
    P.Sandeep, A.Ata, P.Nilotpala, et al. Bioresour. Technol., 196 (2015),pp. 1-51
    [18]
    C.Demergasso, S.Cecilia, G.P.A.Pedro, et al. Hydrometallurgy, 80 (2005),pp. 241-253
    [19]
    P.Galleguillos, F.Remonsellez, F.Galleguillos, et al. Hydrometallurgy, 94 (2008),pp. 148-154
    [20]
    W.Qin, S.Zhen, Z.Yan, et al. Hydrometallurgy, 98 (2009),pp. 337-341
    [21]
    R.Ruan, X.Liu, G.Zou, et al. Hydrometallurgy, 108 (2011),pp. 130-135
    [22]
    N.Pradhan, K.C.Nathsarma, K.Srinivasa Rao, et al. Miner. Eng., 21 (2008),pp. 355-365
    [23]
    Y.Jia, H.Sun, D.Chen, et al. Hydrometallurgy, 164 (2016),pp. 355-361
    [24]
    J.Valdés, J.Cárdenas, R.Quatrini, et al. Hydrometallurgy, 104 (2010),pp. 471-476
    [25]
    T.Rohwerder, W.Sand
    [26]
    A.Schippers, W.Sand Appl. Environ. Microbiol., 65 (1999),pp. 319-321
    [27]
    K.L.Temple, A.R.Colmer J. Bacteriol., 62 (1951),pp. 605-611
    [28]
    R.Quatrini, C.Appia-Ayme, Y.Denis, et al. BMC Genom., 10 (2009),p. 394
    [29]
    M.P.Silverman, H.L.Ehrlich, M.P.Silverman Adv. Appl. Microbiol., 6 (1964),pp. 153-206
    [30]
    F.K.Crundwell Hydrometallurgy, 139 (2013),pp. 132-148
    [31]
    T.A.Fowler, P.R.Holmes, F.K.Crundwell Appl. Environ. Microbiol., 65 (1999),pp. 2987-2993
    [32]
    W.Sand, T.Gehrke, P.G.Jozsa, et al. Hydrometallurgy, 59 (2001),pp. 159-175
    [33]
    C.Liu, Y.Jia, H.Y.Sun, et al. Sci. Rep., 7 (2017),p. 5032
    [34]
    H.Sun, M.Chen, L.Zou, et al. Hydrometallurgy, 155 (2015),pp. 13-19
    [35]
    M.Vera, A.Schippers, W.Sand Appl. Microbiol. Biotechnol., 97 (2013),pp. 7529-7541
    [36]
    R.Zhang, S.Bellenberg, T.R.Neu, et al.
    [37]
    S.J.Li, Z.S.Hua, L.N.Huang, et al. Sci. Rep., 4 (2014),p. 6205
    [38]
    C.Demergasso, F.Galleguillos, P.Soto, et al. Hydrometallurgy, 104 (2010),pp. 382-390
    [39]
    P.E.Soto, P.A.Galleguillos, M.A.Serón, et al. Hydrometallurgy, 133 (2013),pp. 51-57
    [40]
    M.Acosta, P.Galleguillos, Y.Ghorbani, et al. Hydrometallurgy, 150 (2014),pp. 281-289
    [41]
    M.Dopson, D.S.Holmes Appl. Microbiol. Biotechnol., 98 (2014),pp. 8133-8144
    [42]
    G.Wheaton, J.Counts, A.Mukherjee, et al. Minerals, 5 (2015),pp. 397-451
    [43]
    H.Yin, L.Cao, G.Qiu, et al. J. Microbiol. Meth., 70 (2007),pp. 165-178
    [44]
    X.Zhang, J.Niu, Y.Liang, et al. BMC Genet., 17 (2016),pp. 1-12
    [45]
    Q.Hu, X.Guo, Y.Liang, et al. Res. Microbiol., 166 (2015),pp. 525-534
    [46]
    P.L.Bond, S.P.Smriga, J.F.Banfield Appl. Environ. Microbiol., 66 (2000),pp. 3842-3849
    [47]
    L.A.Mutch, H.R.Watling, E.L.Watkin Hydrometallurgy, 104 (2010),pp. 391-398
    [48]
    D.Rawlings, H.Tributsch, G.Hansford Microbiology, 145 (1999),pp. 5-13
    [49]
    L.N.Huang, W.H.Zhou, K.B.Hallberg, et al. Appl. Environ. Microbiol., 77 (2011),pp. 5540-5544
    [50]
    L.X.Chen, J.T.Li, Y.T.Chen, et al. Environ. Microbiol., 15 (2013),pp. 2431-2444
    [51]
    G.L.Tan, W.S.Shu, K.B.Hallberg, et al. Extremophiles, 12 (2008),pp. 657-664
    [52]
    F.Remonsellez, F.Galleguillos, M.Morenopaz, et al. Microb. Biotechnol., 2 (2009),p. 613
    [53]
    A.Schippers, A.Breuker, A.Blazejak, et al. Hydrometallurgy, 104 (2010),pp. 342-350
    [54]
    Y.Xiao, X.Liu, L.Ma, et al. Appl. Microbiol. Biotechnol., 100 (2016),p. 6871
    [55]
    B.W.Chen, X.Y.Liu, W.Y.Liu, et al. J. Ind. Microb. Biotechnol., 36 (2009),pp. 1409-1416
    [56]
    X.Y.Liu, B.W.Chen, J.K.Wen, et al. Hydrometallurgy, 104 (2010),pp. 399-403
    [57]
    R.B.Hawkes, P.D.Franzmann, J.J.Plumb Hydrometallurgy, 83 (2006),pp. 229-236
    [58]
    Y.Xiao, X.Liu, Y.Liang, et al. Appl. Microbiol. Biotechnol., 100 (2016),pp. 1-12
    [59]
    A.K.Halinen, N.J.Beecroft, K.Määttä, et al. Hydrometallurgy, s125–126 (2012),pp. 34-41
    [60]
    M.Riekkola-Vanhanen Nova Biotechnol., 10 (2010),pp. 7-14
    [61]
    X.Xie, S.Xiao, Z.He, et al. J. Appl. Microbiol., 103 (2007),pp. 1227-1238
    [62]
    T.C.Logan, T.Seal, J.A.Brierley
    [63]
    H.R.Watling, D.M.Collinson, J.Li, et al. Miner. Eng., 56 (2014),pp. 35-44
    [64]
    R.Chiume, S.H.Minnaar, I.E.Ngoma, et al. Miner. Eng., 39 (2012),pp. 156-164
    [65]
    P.Basson, M.Gericke, T.L.Grewar, et al. Hydrometallurgy, 133 (2013),pp. 176-181
    [66]
    A.K.Halinen, N.Rahunen, A.H.Kaksonen, et al. Hydrometallurgy, 98 (2009),pp. 92-100
    [67]
    B.Wu, J.K.Wen, B.W.Chen, et al. Rare Met., 33 (2014),pp. 622-627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (97) PDF downloads(9) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return