Shamim Haider, Arne Lindbråthen, Jon Arvid Lie, Petter Vattekar Carstensen, Thorbjørn Johannessen, May-Britt Hägg. Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration. Green Energy&Environment, 2018, 3(3): 266-276. doi: 10.1016/j.gee.2018.03.003
Citation: Shamim Haider, Arne Lindbråthen, Jon Arvid Lie, Petter Vattekar Carstensen, Thorbjørn Johannessen, May-Britt Hägg. Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration. Green Energy&Environment, 2018, 3(3): 266-276. doi: 10.1016/j.gee.2018.03.003

Vehicle fuel from biogas with carbon membranes; a comparison between simulation predictions and actual field demonstration

doi: 10.1016/j.gee.2018.03.003
  • The energy contents of biogas could be significantly enhanced by upgrading it to vehicle fuel quality. A pilot-scale separation plant based on carbon hollow fiber membranes for upgrading biogas to vehicle fuel quality was constructed and operated at the biogas plant, Glør IKS, Lillehammer Norway. Vehicle fuel quality according to Swedish legislation was successfully achieved in a single stage separation process. The raw biogas from anaerobic digestion of food waste contained 64 ± 3 mol% CH4, 30–35 mol% CO2 and less than one percent of N2 and a minor amount of other impurities. The raw biogas was available at 1.03 bar with a maximum flow rate of 60 Nm3 h−1. Pre-treatment of biogas was performed to remove bulk H2O and H2S contents up to the required limits in the vehicle fuel before entering to membrane system. The membrane separation plant was designed to process 60 Nm3 h−1 of raw biogas at pressure up to 21 bar. The initial tests were, however, performed for the feed flow rate of 10 Nm3 h−1 at 21 bar. The successful operation of the pilot plant separation was continuously run for 192 h (8 days). The CH4 purity of 96% and maximum CH4 recovery of 98% was reached in a short-term test of 5 h. The permeate stream contained over 20 mol% CH4 which could be used for the heating application. Aspen Hysys® was integrated with ChemBrane (in-house developed membrane model) to run the simulations for estimation of membrane area and energy requirement of the pilot plant. Cost estimation was performed based on simulation data and later compared with actual field results.

     

  • • Biogas upgrading with carbon membranes. • Single stage separation process. • Energy and cost estimation of process with Hysys simulations. • Comparison of simulated results and actual field results. • Successful Pilot-scale demonstration to achieve 96% pure CH4 and 98% CH4 recovery in a single stage process.
  • loading
  • [1]
    World Energy Review, Statistical Review of World Energy, BP. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017. (Accessed 29 September 2017).
    [2]
    Carbon capture and storage EU, Predicted rise in global energy demand. http://www.zeroemissionsplatform.eu/extranet-library/publication/226-zepop-ed.html. (Accessed 3 October 2017).
    [3]
    K.Kanjilal, S.Ghosh Resour. Pol., 52 (2017),pp. 358-365
    [4]
    A.Demirbas Energ. Source. Part B, 4 (2009),pp. 212-224
    [5]
    P.Weiland Appl. Microbiol. Biot., 85 (2010),pp. 849-860
    [6]
    J.A.Lie
    [7]
    M.Å.Maltesson
    [8]
    K.Wågdahl
    [9]
    R.Rautenbach, K.Welsch J. Membr. Sci., 87 (1994),pp. 107-118
    [10]
    P.M
    [11]
    J.Forsberg
    [12]
    S.Bari Renew. Energy, 9 (1996),pp. 1007-1010
    [13]
    H.Consult as
    [14]
    M.Svensson
    [15]
    L.Deng, M.-B.Hägg Int. J. Greenh. Gas Control, 4 (2010),pp. 638-646
    [16]
    A.Makaruk, M.Miltner, M.Harasek Separ. Purif. Technol., 74 (2010),pp. 83-92
    [17]
    G.Valenti, A.Arcidiacono, J.A.Nieto Biomass Bioenergy, 85 (2016),pp. 35-47
    [18]
    W.N.W.Salleh, A.F.Ismail J. Membr. Sci. Res., 1 (2015),pp. 2-15
    [19]
    Y.Kusuki, H.Shimazaki, N.Tanihara, et al. J. Membr. Sci., 134 (1997),pp. 245-253
    [20]
    T.-J.Kim, H.Vrålstad, M.Sandru, et al. J. Membr. Sci., 428 (2013),pp. 218-224
    [21]
    D.Q.Vu, W.J.Koros, S.J.Miller Ind. Eng. Chem. Res., 41 (2002),pp. 367-380
    [22]
    M.-B. Hägg. J.A. Lie, Patent, US20100162887 A1, 2010.
    [23]
    S.Haider, A.Lindbråthen, M.-B.Hägg Green Energy Environ., 1 (2016),pp. 222-234
    [24]
    S.S.Hosseini, M.R.Omidkhah, A.Zarringhalam Moghaddam, et al. Sep. Purif. Technol., 122 (2014),pp. 278-289
    [25]
    S.Haider, A.Lindbråthen, J.A.Lie, et al. Sep. Purif. Technol., 190 (Suppl. C),pp. 177-189
    [26]
    D.Grainger
    [27]
    D.Grainger, M.-B.Hägg Fuel, 87 (2008),pp. 14-24
    [28]
    I.Menendez, A.B.Fuertes Carbon, 39 (2001),pp. 733-740
    [29]
    A.Lindbråthen, D.R.Grainger, M.B.Hägg Sep. Sci. Technol., 42 (2007),pp. 3049-3070
    [30]
    L.M.Robeson J. Membr. Sci., 320 (2008),pp. 390-400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return