Tian Xie, Tao Zheng, Ruiling Wang, Yuyu Bu, Jin-Ping Ao. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy&Environment, 2018, 3(3): 239-246. doi: 10.1016/j.gee.2018.01.003
Citation: Tian Xie, Tao Zheng, Ruiling Wang, Yuyu Bu, Jin-Ping Ao. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy&Environment, 2018, 3(3): 239-246. doi: 10.1016/j.gee.2018.01.003

Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction

doi: 10.1016/j.gee.2018.01.003
  • The CuOx thin film photocathodes were deposited on F-doped SnO2 (FTO) transparent conducting glasses by alternating current (AC) magnetron reactive sputtering under different Ar:O2 ratios. The advantage of this deposited method is that it can deposit a CuOx thin film uniformly and rapidly with large scale. From the photoelectrochemical (PEC) properties of these CuOx photocathodes, it can be found that the CuOx photocathode with Ar/O2 30:7 provide a photocurrent density of −3.2 mA cm−2 under a bias potential −0.5 V (vs. Ag/AgCl), which was found to be twice higher than that of Ar/O2 with 30:5. A detailed characterization on the structure, morphology and electrochemical properties of these CuOx thin film photocathodes was carried out, and it is found that the improved PEC performance of CuOx semiconductor photocathode with Ar/O2 30:7 attributed to the less defects in it, indicating that this Ar/O2 30:7 is an optimized condition for excellent CuOx semiconductor photocathode fabrication.

     

  • • CuOx thin film photocathodes prepared by a simple magnetron sputtering method. • CuOx thin film with gas ratio 30:7 display much better photoelectrochemical performance. • Higher impedance value and fewer defects can improve the performance of CuOx thin film.
  • loading
  • [1]
    J.Cen, Q.Wu, M.Liu, et al. Green Energy Environ., 2 (2017),pp. 100-111
    [2]
    S.K.Mohapatra, S.E.John, S.Banerjee, et al. Chem. Mater., 21 (2009),pp. 3048-3055
    [3]
    S.W.Boettcher, J.M.Spurgeon, M.C.Putnam, et al. Science, 327 (2010),pp. 185-187
    [4]
    Y.Lin, S.Zhou, S.W.Sheehan, et al. J. Am. Chem. Soc., 133 (2011),pp. 2398-2401
    [5]
    Y.Lin, G.Yuan, S.Sheehan, et al. Energy Environ. Sci., 4 (2011),pp. 4862-4869
    [6]
    B.Klahr, S.Gimenez, F.Fabregat-Santiago, et al. J. Am. Chem. Soc., 134 (2012),pp. 16693-16700
    [7]
    B.Seger, A.B.Laursen, P.C.K.Vesborg, et al. Angew. Chem. Int. Ed., 51 (2012),pp. 9128-9131
    [8]
    Y.W.Chen, J.D.Prange, S.Dühnen, et al. Nat. Mater., 10 (2011),pp. 539-544
    [9]
    Y.Bu, J.P.Ao Green Energy Environ., 2 (2017),pp. 331-362
    [10]
    F.Le Formal, N.Tétreault, M.Cornuz, et al. Chem. Sci., 2 (2011),pp. 737-743
    [11]
    M.Barroso, A.J.Cowan, S.R.Pendlebury, et al. J. Am. Chem. Soc., 133 (2011),pp. 14868-14871
    [12]
    Y.F.Lim, C.S.Chua, C.J.J.Lee, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 25928-25934
    [13]
    Y.Yang, D.Xu, Q.Wu, et al. Sci. Rep., 6 (2016),p. 35158
    [14]
    C.Li, T.Hisatomi, O.Watanabe, et al. Energy Environ. Sci., 8 (2015),pp. 1493-1500
    [15]
    A.Paracchino, V.Laporte, K.Sivula, et al. Nat. Mater., 10 (2011),pp. 456-461
    [16]
    G.Liu, S.Ye, P.Yan, et al. Energy Environ. Sci., 9 (2016),pp. 1327-1334
    [17]
    T.W.Kim, K.S.Choi Science, 343 (2014),pp. 990-994
    [18]
    Y.H.Ng, A.Iwase, A.Kudo, et al. J. Phys. Chem. Lett., 1 (2010),pp. 2607-2612
    [19]
    M.Higashi, R.Abe, T.Takata, et al. Chem. Mater., 21 (2009),pp. 1543-1549
    [20]
    V.Cristino, S.Caramori, R.Argazzi, et al. Langmuir, 27 (2011),pp. 7276-7284
    [21]
    A.Kay, I.Cesar, M.Grätzel J. Am. Chem. Soc., 128 (2006),pp. 15714-15721
    [22]
    K.Sivula, F.Le Formal, M.Grätzel ChemSusChem, 4 (2011),pp. 432-449
    [23]
    A.A.Dobale, A.G.Tamirat, H.M.Chen, et al. J. Mater. Chem. A, 4 (2016),pp. 2205-2216
    [24]
    Q.Huang, F.Kang, H.Liu, et al. J. Mater. Chem. A, 1 (2013),pp. 2418-2425
    [25]
    Z.Zhang, P.Wang J. Mater. Chem., 22 (2012),pp. 2456-2464
    [26]
    K.Nakaoka, J.Ueyama, K.Ogura J. Electrochem. Soc., 151 (2004),pp. C661-C665
    [27]
    N.Mukherjee, B.Show, S.K.Maji, et al. Mater. Lett., 65 (2011),pp. 3248-3250
    [28]
    Y.Bessekhouad, D.Robert, J.-V.Weber Catal. Today, 101 (2005),pp. 315-321
    [29]
    S.Masudy-Panah, R.S.Moakhar, C.S.Chua, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 1206-1213
    [30]
    G.Malandrino, S.T.Finocchiaro, R.L.Nigro, et al. Chem. Mater., 16 (2004),pp. 5559-5561
    [31]
    Y.Yang, Y.Li, M.Pritzker Electrochim. Acta, 213 (2016),pp. 225-235
    [32]
    G.K.Dalapati, S.Masudy-Panah, A.Kumar, et al. Sci. Rep., 5 (2015),p. 17810
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return