Mohammad Hatami, Jiafeng Geng, Dengwei Jing. Enhanced efficiency in Concentrated Parabolic Solar Collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension. Green Energy&Environment, 2018, 3(2): 129-137. doi: 10.1016/j.gee.2017.12.002
Citation: Mohammad Hatami, Jiafeng Geng, Dengwei Jing. Enhanced efficiency in Concentrated Parabolic Solar Collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension. Green Energy&Environment, 2018, 3(2): 129-137. doi: 10.1016/j.gee.2017.12.002

Enhanced efficiency in Concentrated Parabolic Solar Collector (CPSC) with a porous absorber tube filled with metal nanoparticle suspension

doi: 10.1016/j.gee.2017.12.002
  • In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector (CPSC) were investigated. A section of porous-filled absorber tube was modeled as a semi-circular cavity under the solar radiation which is filled by nanofluids and the governing equations were solved by FlexPDE numerical software. The effect of four physical parameters, nanoparticles type, nanoparticles volume fraction (φ), Darcy number (Da) and Rayleigh number (Ra), on the Nusselt number (Nu) was discussed. It turns out that Cu nanoparticle is the most suitable one for such solar collectors, compared to the commonly used Fe3O4, Al2O3, TiO2. With the increased addition of Cu nanoparticles all the parameters φ, Da and Ra shows a significant increase against the Nu, indicates the enhanced heat transfer in such cases. As a result, low concentration of Cu nanoparticle suspension combined with porous matrix was supposed to be beneficial for the performance enhancement of concentrating parabolic solar collector.

     

  • loading
  • [1]
    K.S.Reddy, N.R.Kamnapure, S.Srivastava Int. J. Low Carbon Technol., 12 (2016),pp. 1-23
    [2]
    A.J.Chamkha, I.V.Miroshnichenko, M.A.Sheremet J. Therm. Sci. Eng. Appl., 9 (2017),pp. 41001-41004
    [3]
    V.Khullar, H.Tyagi Int. J. Environ. Stud., 69 (2012),pp. 220-232
    [4]
    A.Kasaeian, S.Daviran, R.D.Azarian, et al. Energy Convers. Manag., 89 (2015),pp. 368-375
    [5]
    T.Sokhansefat, A.B.Kasaeian, F.Kowsary Renew. Sustain. Energy Rev., 33 (2014),pp. 636-644
    [6]
    T.B.Gorji, A.A.Ranjbar Sol. Energy, 122 (2015),pp. 314-325
    [7]
    R.Nasrin, M.A.Alim Int. J. Eng. Sci. Technol., 5 (2013),pp. 58-77
    [8]
    M.Hatami, D.Jing Appl. Therm. Eng., 121 (2017),pp. 1040-1050
    [9]
    M.Hatami, D.Jing J. Mol. Liq., 229 (2017),pp. 203-211
    [10]
    M.Hatami, S.Mosayebidorcheh, D.Jing J. Mol. Liq., 231 (2017),pp. 632-639
    [11]
    M.T.Jamal-Abad, S.Saedodin, M.Aminy Renew. Energy, 107 (2017),pp. 156-163
    [12]
    E.Kaloudis, E.Papanicolaou, V.Belessiotis Renew. Energy, 97 (2016),pp. 218-229
    [13]
    E.Bellos, C.Tzivanidis, K.A.Antonopoulos, et al. Renew. Energy, 94 (2016),pp. 213-222
    [14]
    F.Wang, Z.Cheng, J.Tan, et al. Renew. Sustain. Energy Rev., 79 (2017),pp. 1314-1328
    [15]
    M.Hatami Adv. Powder Technol., 3 (2016),pp. 890-899
    [16]
    M.Hatami, D.Song, D.Jing Int. J. Heat Mass Tran., 98 (2016),pp. 758-767
    [17]
    G.H.R.Kefayati Powder Technol., 299 (2016),pp. 127-149
    [18]
    G.H.R.Kefayati Int. J. Heat Mass Tran., 108 (2017),pp. 1481-1500
    [19]
    G.R.Kefayati Int. J. Heat Mass Tran., 94 (2016),pp. 582-624
    [20]
    G.R.Kefayati Int. J. Heat Mass Tran., 94 (2016),pp. 539-581
    [21]
    J.Zhou, M.Hatami, D.Song, et al. Int. J. Heat Mass Tran., 103 (2016),pp. 715-724
    [22]
    O.Pourmehran, M.Rahimi-Gorji, M.Hatami, et al. J. Taiwan Inst. Chem. E., 55 (2015),pp. 49-68
    [23]
    M.Hatami, D.D.Ganji Powder Technol., 258 (2014),pp. 94-98
    [24]
    P.Tazraei, A.Riasi J. Fluid Eng., 138 (2016)
    [25]
    M.Hatami, G.D D Particuology, 16 (2014),pp. 206-212
    [26]
    A.S.Dogonchi, M.Hatami, G.Domairry Powder Technol., 274 (2015),pp. 186-192
    [27]
    M.Hatami, M.Sheikholeslami, G.Domairry Powder Technol., 260 (2014),pp. 59-67
    [28]
    M.Sheikholeslami, M.Hatami, D.D.Ganji J. Mol. Liq., 211 (2015),pp. 577-583
    [29]
    D.Song, M.Hatami, Y.Wang, et al. Int. J. Heat Mass Tran., 92 (2016),pp. 864-876
    [30]
    W.Tang, M.Hatami, J.Zhou, et al. Int. J. Heat Mass Tran., 115 (2017),pp. 430-440
    [31]
    M.Hatami, J.Zhou, J.Geng, et al. J. Mol. Liq., 231 (2017),pp. 620-631
    [32]
    M.Sheikholeslami, H.B.Rokni Chem. Eng. Process Process Intensif., 120 (2017),pp. 93-104
    [33]
    A.Allouhi, M.B.Amine, R.Saidur, et al. Energy Convers. Manag., 155 (2018),pp. 201-217
    [34]
    A.Mwesigye, J.P.Meyer Appl. Energy, 193 (2017),pp. 393-413
    [35]
    A.Mwesigye, İ.H.Yılmaz, J.P.Meyer Renew. Energy (2017)
    [36]
    E.Bellos, C.Tzivanidis Therm. Sci. Eng. Prog., 2 (2017),pp. 71-79
    [37]
    A.Mwesigye, Z.Huan, J.P.Meyer Energy Convers. Manag., 120 (2016),pp. 449-465
    [38]
    S.E.Ghasemi, A.A.Ranjbar Appl. Therm. Eng., 118 (2017),pp. 807-816
    [39]
    E.Bellos, C.Tzivanidis Sustain. Energy Technol. (2017)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return