Yajun Zhao, Tao Liu, Qiufan Shi, Qingchun Yang, Chunxiao Li, Dawei Zhang, Chaofeng Zhang. Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy&Environment, 2018, 3(1): 78-85. doi: 10.1016/j.gee.2017.12.001
Citation: Yajun Zhao, Tao Liu, Qiufan Shi, Qingchun Yang, Chunxiao Li, Dawei Zhang, Chaofeng Zhang. Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy&Environment, 2018, 3(1): 78-85. doi: 10.1016/j.gee.2017.12.001

Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries

doi: 10.1016/j.gee.2017.12.001
  • Co-doped perovskite oxide La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) composites are prepared by sol–gel method utilizing citric acid as chelating agent. These composites show good catalytic activities when tested as catalysts rechargeable lithium—air batteries. In particular, the La 0.4Sr0.6Co0.4Mn0.6O3 shows a lower potential gap. When these samples are tested as catalysts for Li—air batteries at a current density of 100 mA g−1, the discharge capacities with different La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) catalysts are 5819, 6420, and 7227 mA h g−1, respectively. In addition, under a capacity limitation of 1000 mA h g−1, the cell using La0.4Sr0.6Co0.4Mn0.6O3 as catalyst shows good cycling stability up to 46 cycles. The good electrochemical performance suggests that suitable doping of Co in Mn site of La0.4Sr0.6MnO3 could be a promising route to improve the catalytic activity.

     

  • The two authors contributed equally to this work.
  • loading
  • [1]
    J.Cheng, M.Zhang, Y.Jiang, et al. Electrochim. Acta, 191 (2016),pp. 106-115
    [2]
    O.Crowther, B.Meyer, M.Morgan, et al. J. Power Sources, 196 (2011),pp. 1498-1502
    [3]
    F.Li, R.Ohnishi, Y.Yamada, et al. Chem. Commun., 49 (2013),pp. 1175-1177
    [4]
    S.Chen, F.Dai, M.L.Gordin, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 4231-4235
    [5]
    G.Girishkumar, B.Mccloskey, A.C.Luntz, et al. J. Phys. Chem. Lett., 1 (2010),pp. 2193-2203
    [6]
    J.S.Lee, T.K.Sun, R.Cao, et al. Adv. Eng. Mater., 1 (2011),pp. 34-50
    [7]
    J.J.Xu, D.Xu, Z.L.Wang, et al. Angew. Chem. Int. Ed., 52 (2013),pp. 3887-3890
    [8]
    C.Zhang, D.Tang, X.Hu, et al. Energy Storage Mater., 2 (2016),pp. 8-13
    [9]
    Y.Cui, Z.Wen, X.Liang, et al. Energy Environ. Sci., 5 (2012),pp. 7893-7897
    [10]
    B.Scrosati, J.Hassoun, Y.K.Sun Energy Environ. Sci., 4 (2011),pp. 3287-3295
    [11]
    T.Şener, E.Kayhan, M.Sevim, et al. J. Power Sources, 288 (2015),pp. 36-41
    [12]
    N.Sun, H.Liu, Z.Yu, et al. Solid State Ionics, 268 (2014),pp. 125-130
    [13]
    R.Cao, J.S.Lee, M.Liu, et al. Adv. Eng. Mater., 2 (2012),pp. 816-829
    [14]
    A.Kraytsberg, Y.Ein-Eli Nano Energy, 2 (2013),pp. 468-480
    [15]
    Y.Shao, S.Park, J.Xiao, et al. ACS Catal., 2 (2012),pp. 844-857
    [16]
    P.Li, J.Zhang, Q.Yu, et al. Electrochim. Acta, 165 (2015),pp. 78-84
    [17]
    F.Cheng, J.Chen Chem. Soc. Rev., 43 (2012),pp. 2172-2192
    [18]
    J.Hu, L.Wang, L.Shi, et al. Electrochim. Acta, 161 (2015),pp. 115-123
    [19]
    J.Hu, L.Shi, Q.Liu, et al. RSC Adv., 5 (2015),pp. 92096-92106
    [20]
    B.Ming, J.Li, F.Kang, et al. J. Power Sources, 198 (2012),pp. 428-431
    [21]
    O.Oloniyo, S.Kumar, K.Scott J. Electron. Mater., 41 (2012),pp. 921-927
    [22]
    G.Liu, H.Chen, L.Xia, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 22478-22486
    [23]
    K.N.Jung, J.H.Jung, W.B.Im, et al. ACS Appl. Mater. Interfaces, 5 (2013),pp. 9902-9907
    [24]
    Q.Liao, Y.Wang, Y.Chen, et al. J. Membr. Sci., 468 (2014),pp. 184-191
    [25]
    J.Suntivich, H.A.Gasteiger, N.Yabuuchi, et al. Nat. Chem., 3 (2011),pp. 546-550
    [26]
    J.Suntivich, K.J.May, H.A.Gasteiger, et al. Science, 43 (2012),pp. 1383-1385
    [27]
    A.Vojvodic, J.K.Nørskov Science, 334 (2011),pp. 1355-1356
    [28]
    F.Lu, J.Sui, J.Su, et al. J. Power Sources, 271 (2014),pp. 55-59
    [29]
    J.Hu, L.Wang, L.Shi, et al. J. Power Sources, 269 (2014),pp. 144-151
    [30]
    Z.Wang, Y.You, J.Yuan, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 6520-6528
    [31]
    J.I.Jung, H.Y.Jeong, J.S.Lee, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 4670-4674
    [32]
    N.Sun, H.Liu, Z.Yu, et al. RSC Adv., 6 (2016),pp. 13522-13530
    [33]
    W.G.Hardin, D.A.Slanac, X.Wang, et al. J. Phys. Chem. Lett., 4 (2013),pp. 1254-1259
    [34]
    G.Kéranguéven, S.Royer, E.Savinova Electrochem. Commun., 50 (2015),pp. 28-31
    [35]
    T.Poux, A.Bonnefont, A.Ryabova, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 13595-13600
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return