Minman Tong, Youshi Lan, Qingyuan Yang, Chongli Zhong. High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy&Environment, 2018, 3(2): 107-119. doi: 10.1016/j.gee.2017.09.004
Citation: Minman Tong, Youshi Lan, Qingyuan Yang, Chongli Zhong. High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture. Green Energy&Environment, 2018, 3(2): 107-119. doi: 10.1016/j.gee.2017.09.004

High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture

doi: 10.1016/j.gee.2017.09.004
  • The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal- or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carbon dioxide (CO2) and store methane (CH4), where the latter is a kind of clean energy source with abundant reserves and lower CO2 emission. Hundreds of thousands of porous materials can be enrolled on the candidate list, but how to quickly identify the really promising ones, or even evolve materials (namely, rational design high-performing candidates) based on the large database of present porous materials? In this context, high-throughput computational techniques, which have emerged in the past few years as powerful tools, make the targets of fast evaluation of adsorbents and evolving materials for CO2 capture and CH4 storage feasible. This review provides an overview of the recent computational efforts on such related topics and discusses the further development in this field.

     

  • loading
  • [1]
    Earth's CO2. http://co2now.org/ (Accessed 7 May 2017).
    [2]
    S.Chu Science, 325 (2009),p. 1599
    [3]
    R.S.Haszeldine Science, 325 (2009),pp. 1647-1652
    [4]
    H.Yang, Z.Xu, M.Fan, et al. J. Environ. Sci., 20 (2008),pp. 14-27
    [5]
    K.Sumida, D.L.Rogow, J.A.Mason, et al. Chem. Rev., 112 (2012),pp. 724-781
    [6]
    H.Furukawa, O.M.Yaghi J. Am. Chem. Soc., 131 (2009),pp. 8875-8883
    [7]
    W.Lu, J.P.Sculley, D.Yuan, et al. Angew. Chem. Int. Ed., 51 (2012),pp. 7480-7484
    [8]
    T.-H.Bae, M.R.Hudson, J.A.Mason, et al. Energy Environ. Sci., 6 (2013),pp. 128-138
    [9]
    J.Stephenson
    [10]
    R.A.Alvarez, S.W.Pacala, J.J.Winebrake, et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 6435-6440
    [11]
    S.Yeh Energy Policy, 35 (2007),pp. 5865-5875
    [12]
    V.C.Menon, S.Komarneni J. Porous Mater., 5 (1998),pp. 43-58
    [13]
    T.A.Makal, J.-R.Li, W.Lua, et al. Chem. Soc. Rev., 41 (2012),pp. 7761-7779
    [14]
    C.M.Simon, J.Kim, D.A.Gomez-Gualdron, et al. Energy Environ. Sci., 8 (2015),pp. 1190-1199
    [15]
    C.Mellot-Draznieks, J.M.Newsam, A.M.Gorman, et al. Angew. Chem., Int. Ed., 39 (2000),pp. 2270-2275
    [16]
    Y.J.Colón, R.Q.Snurr Chem. Soc. Rev., 43 (2014),pp. 5735-5749
    [17]
    A.Jain, S.P.Ong, G.Hautier, et al. Apl. Mater., 1 (2013),p. 011002
    [18]
    F.H.Allen Acta Crystallogr., Sect. B Struct. Sci., 58 (2002),pp. 380-388
    [19]
    P.Z.Moghadam, A.Li, S.B.Wiggin, et al. Chem. Mater., 29 (2017),pp. 2618-2625
    [20]
    J.Goldsmith, A.G.Wong-Foy, M.J.Cafarella, et al. Chem. Mater., 25 (2013),pp. 3373-3382
    [21]
    Y.G.Chung, J.Camp, M.Haranczyk, et al. Chem. Mater., 26 (2014),pp. 6185-6192
    [22]
    T.Watanabe, D.S.Sholl Langmuir, 28 (2012),pp. 14114-14128
    [23]
    S.Li, Y.G.Chung, R.Q.Snurr Langmuir, 32 (2016),pp. 10368-10376
    [24]
    I.A.Baburin, S.Leoni CrystEngComm, 12 (2010),pp. 2809-2816
    [25]
    L.-C.Lin, A.H.Berger, R.L.Martin, et al. Nat. Mater., 11 (2012),pp. 633-641
    [26]
    H.Hayashi, A.P.Cote, H.Furukawa, et al. Nat. Mater., 6 (2007),pp. 501-506
    [27]
    D.W.Lewis, A.R.Ruiz-Salvador, A.Gomez, et al. CrystEngComm, 11 (2009),pp. 2272-2276
    [28]
    T.F.Willems, C.H.Rycroft, M.Kazi, et al. Microporous Mesoporous Mater., 149 (2012),pp. 134-141
    [29]
    C.E.Wilmer, M.Leaf, C.Y.Lee, et al. Nat. Chem., 4 (2012),pp. 83-89
    [30]
    M. Tong, Y. Lan, Q. Yang, C. Zhong, Chem. Eng. Sci. 168 456–464
    [31]
    S.Bureekaew, R.Schmid CrystEngComm, 15 (2013),pp. 1551-1562
    [32]
    B.Lukose, A.Kuc, J.Frenzel, et al. Beilstein J. Nanotechnol., 1 (2010),pp. 60-70
    [33]
    B.Lukose, A.Kuc, T.Heine J. Mol. Model., 19 (2013),pp. 2143-2148
    [34]
    R.L.Martin, C.M.Simon, B.Medasani, et al. J. Phys. Chem. C, 118 (2014),pp. 23790-23802
    [35]
    R.L.Martin, C.M.Simon, B.Smit, et al. J. Am. Chem. Soc., 136 (2014),pp. 5006-5022
    [36]
    C.Baerlocher, W.M.Meier, D.H.Olson
    [37]
    International Zeolite Association. http://www.iza-online.org/.
    [38]
    I.Matito-Martos, A.Martin-Calvo, J.J.Gutiérrez-Sevillano, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 19884-19893
    [39]
    E.Haldoupis, S.Nair, D.S.Sholl J. Am. Chem. Soc., 132 (2010),pp. 7528-7539
    [40]
    T.Van Heest, S.L.Teich-McGoldrick, J.A.Greathouse, et al. J. Phys. Chem. C, 116 (2012),pp. 13183-13195
    [41]
    T.Düren, F.Millange, G.Ferey, et al. J. Phys. Chem. C, 111 (2007),pp. 15350-15356
    [42]
    A.L.Myers, P.A.Monson Langmuir, 18 (2002),pp. 10261-10273
    [43]
    E.M.Sevick, P.A.Monson, J.M.Ottino J. Chem. Phys., 88 (1988),pp. 1198-1206
    [44]
    L.Sarkisov, A.Harrison Mol. Simul., 37 (2011),pp. 1248-1257
    [45]
    E.L.First, C.E.Gounaris, J.Wei, et al. Phys. Chem. Chem. Phys., 13 (2011),pp. 17339-17358
    [46]
    E.V.Alexandrov, V.A.Blatov, A.V.Kochetkov, et al. CrystEngComm, 13 (2011),pp. 3947-3958
    [47]
    Q.Yang, D.Liu, C.Zhong, et al. Chem. Rev., 113 (2013),pp. 8261-8323
    [48]
    S.L.Mayo, B.D.Olafson, W.A.Goddard J. Phys. Chem., 94 (1990),pp. 8897-8909
    [49]
    A.K.Rappé, C.J.Casewit, K.S.Colwell, et al. J. Am. Chem. Soc., 114 (1992),pp. 10024-10035
    [50]
    K.Makrodimitris, G.K.Papadopoulos, D.N.Theodorou J. Phys. Chem. B, 105 (2001),pp. 777-788
    [51]
    A.I.Skoulidas, D.S.Sholl J. Phys. Chem. B, 106 (2002),pp. 5058-5067
    [52]
    A.García-Sánchez, C.O.Ania, J.B.Parra, et al. J. Phys. Chem. C, 113 (2009),pp. 8814-8820
    [53]
    D.Dubbeldam, S.Calero, T.J.H.Vlugt, et al. J. Phys. Chem. B, 108 (2004),pp. 12301-12313
    [54]
    D.Dubbeldam, S.Calero, T.J.H.Vlugt, et al. Phys. Rev. Lett., 93 (2004),p. 088302
    [55]
    H.Fang, A.Kulkarni, P.Kamakoti, et al. Chem. Mater, 28 (2016),pp. 3887-3896
    [56]
    M.G.Martin, J.I.Siepmann J. Phys. Chem. B, 103 (1999),pp. 4508-4517
    [57]
    S.Q.Ma, D.F.Sun, J.M.Simmons, et al. J. Am. Chem. Soc., 130 (2008),pp. 1012-1016
    [58]
    M.Fernandez, T.K.Woo, C.E.Wilmer, et al. J. Phys. Chem. C, 117 (2013),pp. 7681-7689
    [59]
    Y.Bao, R.L.Martin, C.M.Simon, et al. J. Phys. Chem. C, 119 (2015),pp. 186-195
    [60]
    J.A.Mason, M.Veenstra, J.R.Long Chem. Sci., 5 (2014),pp. 32-51
    [61]
    Y.Peng, V.Krungleviciute, I.Eryazici, et al. J. Am. Chem. Soc., 135 (2013),pp. 11887-11894
    [62]
    M.O'Keeffe, M.A.Peskov, S.J.Ramsden, et al. Acc. Chem. Res., 41 (2008),pp. 1782-1789
    [63]
    Q.Xu, C.Zhong J. Phys. Chem. C, 114 (2010),pp. 5035-5042
    [64]
    E.Haldoupis, S.Nair, D.S.Sholl J. Am. Chem. Soc., 134 (2012),pp. 4313-4323
    [65]
    C.E.Wilmer, K.C.Kim, R.Q.Snurr J. Phys. Chem. Lett., 3 (2012),pp. 2506-2511
    [66]
    E.S.Kadantsev, P.G.Boyd, T.D.Daff, et al. J. Phys. Chem. Lett., 4 (2013),pp. 3056-3061
    [67]
    C.E.Wilmer, O.K.Farha, Y.-S.Bae, et al. Energy Environ. Sci., 5 (2012),pp. 9849-9856
    [68]
    M.Fernandez, P.G.Boyd, T.D.Daff, et al. J. Phys. Chem. Lett., 5 (2014),pp. 3056-3060
    [69]
    Y.G.Chung, D.A.Gómez-Gualdrón, P.Li, et al. Sci. Adv., 2 (2016)
    [70]
    M.M.Faruque Hasan, E.L.Firstz, C.A.Floudas Phys. Chem. Chem. Phys., 15 (2013),pp. 17601-17618
    [71]
    R.Krishna, J.M.van Baten J. Membr. Sci., 360 (2010),pp. 323-333
    [72]
    L.-C.Lin, A.Berger, R.L.Martin, et al. Nat. Mater., 11 (2012),pp. 633-641
    [73]
    J.Kim, M.Abouelnasr, L.-C.Lin, et al. J. Am. Chem. Soc., 135 (2013),pp. 7545-7552
    [74]
    S.Kirklin, B.Meredig, C.Wolverton Adv. Energy Mater., 3 (2013),pp. 252-262
    [75]
    A.Martsinovich J. Phys. Chem. C, 115 (2011),pp. 11781-11792
    [76]
    N.Okimoto, N.Futatsugi, H.Fuji, et al. Plos. Comput. Biol., 5 (2009)
    [77]
    L.Cheng, R.S.Assary, X.Qu, et al. J. Phys. Chem. Lett., 6 (2015),pp. 283-291
    [78]
    C.Toher, J.J.Plata, O.Levy, et al. Phys. Rev. B, 90 (2014),p. 174107
    [79]
    M.P.Andersson, T.Bligaard, A.Kustov, et al. J. Catal., 239 (2006),pp. 501-506
    [80]
    D.W.Siderius, V.K.Shen, D.W.Siderius, et al. J. Phys. Chem. C, 117 (2013),pp. 5861-5872
    [81]
    K.Yu, J.G.McDaniel, J.R.Schmidt J. Chem. Phys., 137 (2012),p. 244102
    [82]
    D.A.Gomez-Gualdron, O.V.Gutov, V.Krungleviciute, et al. Chem. Mater., 26 (2014),pp. 5632-5639
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (250) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return