Fen Yue, Christian Marcus Pedersen, Xiuyin Yan, Yequn Liu, Danlei Xiang, Caifang Ning, Yingxiong Wang, Yan Qiao. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue. Green Energy&Environment, 2018, 3(2): 163-171. doi: 10.1016/j.gee.2017.08.006
Citation: Fen Yue, Christian Marcus Pedersen, Xiuyin Yan, Yequn Liu, Danlei Xiang, Caifang Ning, Yingxiong Wang, Yan Qiao. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue. Green Energy&Environment, 2018, 3(2): 163-171. doi: 10.1016/j.gee.2017.08.006

NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

doi: 10.1016/j.gee.2017.08.006
  • Hydrothermal carbonization (HTC) is a valuable approach to convert furfural residue (FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc.) especially 1D selective gradient total correlation spectroscopy (TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies.

     

  • loading
  • [1]
    W.H.Qu, Y.Y.Xu, A.H.Lu, et al. Bioresour. Technol., 189 (2015),pp. 285-291
    [2]
    F.Yue, J.Zhang, C.M.Pedersen, et al. ChemistrySelect, 2 (2017),pp. 583-590
    [3]
    G.K.Parshetti, S.Kent Hoekman, R.Balasubramanian Bioresour. Technol., 135 (2013),pp. 683-689
    [4]
    B.Hu, K.Wang, L.Wu, et al. Adv. Mater, 22 (2010),pp. 813-828
    [5]
    A.Funke, F.Ziegler Biofuel. Bioprod. Bior., 4 (2010),pp. 160-177
    [6]
    L.Yan, J.Yu, J.Houston, et al. Green Energy Environ., 2 (2017),pp. 84-99
    [7]
    X.Lu, P.J.Pellechia, J.R.Flora, et al. Bioresour. Technol., 138 (2013),pp. 180-190
    [8]
    M.Sevilla, A.B.Fuertes Carbon, 47 (2009),pp. 2281-2289
    [9]
    M.Sasaki, Z.Fang, Y.Fukushima, et al. Ind. Eng. Chem. Res., 39 (2000),pp. 2883-2890
    [10]
    C.Falco, N.Baccile, M.M.Titirici Green Chem., 13 (2011),pp. 3273-3281
    [11]
    M.T.Reza, A.Freitas, X.K.Yang, et al. ACS Sustain. Chem. Eng., 4 (2016),pp. 3250-3254
    [12]
    R.Becker, U.Dorgerloh, E.Paulke, et al. Chem. Eng. Technol., 37 (2014),pp. 511-518
    [13]
    M.Xiao, F.Wu J. Environ. Sci., 26 (2014),pp. 935-954
    [14]
    Y.Wang, C.M.Pedersen, T.Deng, et al. Bioresour. Technol., 143 (2013),pp. 384-390
    [15]
    J.Poerschmann, B.Weiner, R.Koehler, et al. Chemosphere, 131 (2015),pp. 71-77
    [16]
    M.T.Reza, B.Wirth, U.Luder, et al. Bioresour. Technol., 169 (2014),pp. 352-361
    [17]
    R.Becker, U.Dorgerloh, M.Helmis, et al. Bioresour. Technol., 130 (2013),pp. 621-628
    [18]
    J.Stemann, A.Putschew, F.Ziegler Bioresour. Technol., 143 (2013),pp. 139-146
    [19]
    J.Poerschmann, B.Weiner, H.Wedwitschka, et al. Bioresour. Technol., 189 (2015),pp. 145-153
    [20]
    J.Poerschmann, B.Weiner, H.Wedwitschka, et al. Bioresour. Technol., 164 (2014),pp. 162-169
    [21]
    N.Baccile, C.Falco, M.-M.Titirici Green Chem., 16 (2014),pp. 4839-4869
    [22]
    Y.Le Brech, L.Delmotte, J.Raya, et al. Anal. Chem., 87 (2015),pp. 843-847
    [23]
    X.Cao, X.Peng, S.Sun, et al. J. Agr. Food Chem., 62 (2014),pp. 12360-12365
    [24]
    Y.Qiao, C.M.Pedersen, D.Huang, et al. ACS Sustain. Chem. Eng., 4 (2016),pp. 3327-3333
    [25]
    Y.Qiao, C.M.Pedersen, Y.X.Wang, et al. ACS Sustain. Chem. Eng., 2 (2014),pp. 2576-2581
    [26]
    P.W.Howe J. Magn. Resonance, 179 (2006),pp. 217-222
    [27]
    A.S.Kashin, K.I.Galkin, E.A.Khokhlova, et al. Angew. Chem. Int., 55 (2016),pp. 2161-2166
    [28]
    S.Karagöz, T.Bhaskar, A.Muto, et al. Chem. Eng. J., 108 (2005),pp. 127-137
    [29]
    F.Jin, Z.Zhou, T.Moriya, et al. Environ. Sci. Technol., 39 (2005),pp. 1893-1902
    [30]
    Y.Wang, C.M.Pedersen, Y.Qiao, et al. Carbohydr. Polym., 115 (2015),pp. 439-443
    [31]
    C.Liu, C.Zhang, K.Liu, et al. Biomass Bioenergy, 72 (2015),pp. 189-199
    [32]
    H.Fukuda, A.Kondo, H.Noda J. Biosci. Bioeng, 92 (2001),pp. 405-416
    [33]
    G.K.Glushonok, T.G.Glushonok, L.A.Maslovskaya, et al. Russ. J. Gen. Chem., 73 (2003),pp. 1027-1031
    [34]
    P.R.Patwardhan, J.A.Satrio, R.C.Brown, et al. Bioresour. Technol., 101 (2010),pp. 4646-4655
    [35]
    A.L.Peterson, A.L.Waterhouse J. Agric. Food Chem., 64 (2016),pp. 6869-6878
    [36]
    T.Rundlof, M.Mathiasson, S.Bekiroglu, et al. J. Pharmaceut. Biomedical, 52 (2010),pp. 645-651
    [37]
    J.Poerschmann, I.Baskyr, B.Weiner, et al. Bioresour. Technol., 133 (2013),pp. 581-588
    [38]
    N.Baccile, G.Laurent, F.Babonneau, et al. J. Phys. Chem. C, 113 (2009),pp. 9644-9654
    [39]
    H.Wikberg, T.Ohra-aho, F.Pileidis, et al. ACS Sustain. Chem. Eng., 3 (2015),pp. 2737-2745
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (160) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return