Shao Su, Shimou Chen, Chunhai Fan. Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy&Environment, 2018, 3(2): 97-106. doi: 10.1016/j.gee.2017.08.005
Citation: Shao Su, Shimou Chen, Chunhai Fan. Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy&Environment, 2018, 3(2): 97-106. doi: 10.1016/j.gee.2017.08.005

Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis

doi: 10.1016/j.gee.2017.08.005
  • With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dimensional (2D) nanomaterials hold great promise due to their unique chemical and physical properties, which have been extensively employed to monitor the environmental pollutants combined with different detection techniques. In this review, we summarize recent advances in 2D nanomaterials-based electrochemical sensors for detecting heavy metal ions, organic compounds, pesticides, antibiotics and bacteria. We also discuss perspectives and challenges of 2D nanomaterials in environmental monitoring.

     

  • [1]
    D.J.Late, B.Liu, H.Matte, et al. Adv. Funct. Mater., 22 (2012),pp. 1894-1905
    [2]
    M.Thripuranthaka, R.V.Kashid, C.Sekhar Rout, et al. Appl. Phys. Lett., 104 (2014)
    [3]
    P.K.Kannan, D.J.Late, H.Morgan, et al. Nanoscale, 7 (2015),pp. 13293-13312
    [4]
    M.Chhowalla, H.S.Shin, G.Eda, et al. Nat. Chem., 5 (2013),pp. 263-275
    [5]
    S.Z.Butler, S.M.Hollen, L.Cao, et al. ACS Nano, 7 (2013),pp. 2898-2926
    [6]
    M.Xu, T.Liang, M.Shi, et al. Chem. Rev., 113 (2013),pp. 3766-3798
    [7]
    H.Ramakrishna Matte, A.Gomathi, A.K.Manna, et al. Angew. Chem. Int. Ed., 49 (2010),pp. 4059-4062
    [8]
    W.L.Song, P.Wang, L.Cao, et al. Angew. Chem. Int. Ed, 51 (2012),pp. 6498-6501
    [9]
    K.He, C.Poole, K.F.Mak, et al. Nano Lett., 13 (2013),pp. 2931-2936
    [10]
    C.Zhu, Z.Zeng, H.Li, et al. J. Am. Chem. Soc., 135 (2013),pp. 5998-6001
    [11]
    Y.Zhang, B.Zheng, C.Zhu, et al. Adv. Mater., 27 (2015),pp. 935-939
    [12]
    S.He, K.-K.Liu, S.Su, et al. Anal. Chem., 84 (2012),pp. 4622-4627
    [13]
    Y.Wen, F.Xing, S.He, et al. Chem. Commun., 46 (2010),pp. 2596-2598
    [14]
    D.Su Green Energy Environ., 2 (2017),pp. 70-83
    [15]
    Y.Liu, Q.Sun, W.Li, et al. Green Energy Environ. (2017)
    [16]
    K.J.Huang, J.Z.Zhang, Y.J.Liu, et al. Sens. Actuat. B Chem., 194 (2014),pp. 303-310
    [17]
    K.J.Huang, Y.J.Liu, G.W.Shi, et al. Sens. Actuat. B Chem., 201 (2014),pp. 579-585
    [18]
    D.J.Late, B.Liu, H.R.Matte, et al. ACS Nano, 6 (2012),pp. 5635-5641
    [19]
    C.Peng, B.Jiang, Q.Liu, et al. Energy Environ. Sci., 4 (2011),pp. 2035-2040
    [20]
    S.Su, W.Cao, W.Liu, et al. Biosens. Bioelectron., 94 (2017),pp. 552-559
    [21]
    S.Su, J.Chao, D.Pan, et al. Electroanalysis, 27 (2015),pp. 1062-1072
    [22]
    S.Su, C.Zhang, L.Yuwen, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 18735-18741
    [23]
    K.J.Huang, H.L.Shuai, J.Z.Zhang Biosens. Bioelectron., 77 (2016),pp. 69-75
    [24]
    C.S.Rout, P.D.Joshi, R.V.Kashid, et al. Sci. Rep., 3 (2013),p. 3282
    [25]
    S.R.Kadam, D.J.Late, R.P.Panmand, et al. J. Mater. Chem. A, 3 (2015),pp. 21233-21243
    [26]
    X.Liu, Y.Tang, L.Wang, et al. Adv. Mater., 19 (2007),pp. 1471-1474
    [27]
    S.Su, W.Wu, J.Gao, et al. J. Mater. Chem., 22 (2012),pp. 18101-18110
    [28]
    Y.Zhao, F.Chen, Q.Zhang, et al. NPG Asia Mater., 6 (2014),p. e131
    [29]
    P.Wang, Y.Wan, A.Ali, et al. Sci. Chi. Chem., 59 (2016),pp. 237-242
    [30]
    H.Xu, P.Xu, S.Gao, et al. Biosens. Bioelectron., 47 (2013),pp. 520-523
    [31]
    Y.Tian, Y.Wang, Y.Xu, et al. Sci. Chi. Chem., 58 (2015),pp. 514-518
    [32]
    C.Song, B.Yang, Y.Zhu, et al. Biosens. Bioelectron., 87 (2017),pp. 59-65
    [33]
    C.Song, B.Yang, Y.Yang, et al. Sci. Chi. Chem., 59 (2016),pp. 16-29
    [34]
    N.Solovyev, M.Vinceti, P.Grill, et al. Anal. Chim. Acta, 973 (2017),pp. 25-33
    [35]
    M.Labib, E.H.Sargent, S.O.Kelley Chem. Rev., 116 (2016),pp. 9001-9090
    [36]
    Y.Wan, Y.Su, X.Zhu, et al. Biosens. Bioelectron., 47 (2013),pp. 1-11
    [37]
    Z.Zhu, Y.Su, J.Li, et al. Anal. Chem., 81 (2009),pp. 7660-7666
    [38]
    W.Zhang, A.M.Asiri, D.Liu, et al. TrAC Trends Anal. Chem., 54 (2014),pp. 1-10
    [39]
    M.Liang, K.Fan, Y.Pan, et al. Anal. Chem., 85 (2012),pp. 308-312
    [40]
    Y.Dou, Z.Jiang, W.Deng, et al. J. Electroanal. Chem., 781 (2016),pp. 339-344
    [41]
    H.Chen, X.Zuo, S.Su, et al. Analyst, 133 (2008),pp. 1182-1186
    [42]
    S.Su, Y.He, M.Zhang, et al. Appl. Phys. Lett., 93 (2008),p. 023113
    [43]
    F.Perreault, A.F.De Faria, M.Elimelech Chem. Soc. Rev., 44 (2015),pp. 5861-5896
    [44]
    H.Chang, H.Wu Energy Environ. Sci., 6 (2013),pp. 3483-3507
    [45]
    J.Wang, X.Chen, K.Wu, et al. Electroanalysis, 28 (2016),pp. 63-68
    [46]
    P.Sahoo, B.Panigrahy, S.Sahoo, et al. Biosens. Bioelectron., 43 (2013),pp. 293-296
    [47]
    J.Cui, S.Xu, L.Wang Sci. China Mater., 60 (2017),pp. 352-360
    [48]
    Y.Wei, C.Gao, F.-L.Meng, et al. J. Phys. Chem. C, 116 (2011),pp. 1034-1041
    [49]
    S.Chaiyo, E.Mehmeti, K.Žagar, et al. Anal. Chim. Acta, 918 (2016),pp. 26-34
    [50]
    H.Zhou, X.Wang, P.Yu, et al. Analyst, 137 (2012),pp. 305-308
    [51]
    Y.Zhang, H.Zhao, Z.Wu, et al. Biosens. Bioelectron., 48 (2013),pp. 180-187
    [52]
    Z.-Q.Zhao, X.Chen, Q.Yang, et al. Chem. Commun., 48 (2012),pp. 2180-2182
    [53]
    Y.Zhang, G.M.Zeng, L.Tang, et al. Anal. Chem., 87 (2015),pp. 989-996
    [54]
    Z.Zhang, X.Fu, K.Li, et al. Sens. Actuat. B Chem., 225 (2016),pp. 453-462
    [55]
    M.Wang, S.Zhang, Z.Ye, et al. Microchim. Acta, 182 (2015),pp. 2251-2258
    [56]
    K.J.Huang, L.Wang, Y.J.Liu, et al. Electrochim. Acta, 107 (2013),pp. 379-387
    [57]
    Y.Guo, Y.Wang, S.Liu, et al. Analyst, 140 (2015),pp. 551-559
    [58]
    K.J.Huang, Y.J.Liu, Y.M.Liu, et al. J. Hazard. Mater., 276 (2014),pp. 207-215
    [59]
    S.Su, W.Cao, C.Zhang, et al. RSC Adv., 6 (2016),pp. 76614-76620
    [60]
    L.Chen, Y.Tang, K.Wang, et al. Electrochem. Commun., 13 (2011),pp. 133-137
    [61]
    K.J.Huang, L.Wang, J.Li, et al. Microchim. Acta, 180 (2013),pp. 751-757
    [62]
    X.Ma, Z.Liu, C.Qiu, et al. Microchim. Acta, 180 (2013),pp. 461-468
    [63]
    R.Zhang, C.-L.Sun, Y.-J.Lu, et al. Anal. Chem., 87 (2015),pp. 12262-12269
    [64]
    S.Guo, D.Wen, Y.Zhai, et al. Biosens. Bioelectron., 26 (2011),pp. 3475-3481
    [65]
    M.S.Goh, M.Pumera Anal. Bioanal. Chem., 399 (2011),pp. 127-131
    [66]
    T.Yang, R.Yu, H.Chen, et al. J. Electroanal. Chem., 781 (2016),pp. 70-75
    [67]
    T.W.Chen, Z.H.Sheng, K.Wang, et al. Chem.-Asian J., 6 (2011),pp. 1210-1216
    [68]
    C.X.Guo, Y.Lei, C.M.Li Electroanalysis, 23 (2011),pp. 885-893
    [69]
    G.Zhu, Y.Yi, B.Zou, et al. Microchim. Acta, 182 (2015),pp. 871-877
    [70]
    Y.Wen, W.Wen, X.Zhang, et al. Biosens. Bioelectron., 79 (2016),pp. 894-900
    [71]
    C.Wu, Q.Cheng, K.Wu Anal. Chem., 87 (2015),pp. 3294-3299
    [72]
    J.Luo, J.Cong, J.Liu, et al. Anal. Chim. Acta, 864 (2015),pp. 74-84
    [73]
    X.Zhao, X.Xia, S.Yu, et al. Anal. Methods, 6 (2014),pp. 9375-9382
    [74]
    X.Zhang, L.Wu, J.Zhou, et al. J. Electroanal. Chem., 742 (2015),pp. 97-103
    [75]
    T.Yang, H.Chen, R.Yang, et al. Microchim. Acta, 182 (2015),pp. 2623-2628
    [76]
    K.J.Huang, L.Wang, J.Li, et al. Sens. Actuat. B Chem., 178 (2013),pp. 671-677
    [77]
    M.Wei, G.Zeng, Q.Lu Microchim. Acta, 181 (2014),pp. 121-127
    [78]
    Y.Wang, S.Zhang, D.Du, et al. J. Mater. Chem., 21 (2011),pp. 5319-5325
    [79]
    Y.Yang, A.M.Asiri, D.Du, et al. Analyst, 139 (2014),pp. 3055-3060
    [80]
    N.K.Mogha, V.Sahu, M.Sharma, et al. Mater. Des., 111 (2016),pp. 312-320
    [81]
    S.Wu, F.Huang, X.Lan, et al. Sens. Actuat. B Chem., 177 (2013),pp. 724-729
    [82]
    Q.Zhou, L.Yang, G.Wang, et al. Biosens. Bioelectron., 49 (2013),pp. 25-31
    [83]
    L.Yang, G.Wang, Y.Liu Anal. Biochem., 437 (2013),pp. 144-149
    [84]
    K.J.Ju, J.X.Feng, J.J.Feng, et al. Microchim. Acta, 182 (2015),pp. 2427-2434
    [85]
    Y.Li, Y.Zhang, G.Han, et al. Chin. J. Chem., 34 (2016),pp. 82-88
    [86]
    M.Wang, J.Huang, M.Wang, et al. Food Chem., 151 (2014),pp. 191-197
    [87]
    J.Gong, X.Miao, T.Zhou, et al. Talanta, 85 (2011),pp. 1344-1349
    [88]
    P.Noyrod, O.Chailapakul, W.Wonsawat, et al. J. Electroanal. Chem., 719 (2014),pp. 54-59
    [89]
    Y.Wei, R.Yang, Z.Guo, et al. Anal. Methods, 4 (2012),pp. 353-356
    [90]
    X.Xue, Q.Wei, D.Wu, et al. Electrochim. Acta, 116 (2014),pp. 366-371
    [91]
    R.Karthik, J.V.Kumar, S.-M.Chen, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 6547-6559
    [92]
    X.Xi, L.Ming Anal. Methods, 4 (2012),pp. 3013-3018
    [93]
    J.Y.Peng, C.T.Hou, X.X.Liu, et al. Talanta, 86 (2011),pp. 227-232
    [94]
    Y.Wu, L.Tang, L.Huang, et al. Mater. Sci. Eng. C, 39 (2014),pp. 92-99
    [95]
    S.Prashanth, N.L.Teradal, J.Seetharamappa, et al. Electrochim. Acta, 133 (2014),pp. 49-56
    [96]
    Y.Xu, M.Gao, G.Zhang, et al. Chin. J. Catal., 36 (2015),pp. 1936-1942
    [97]
    F.Wang, L.Zhu, J.Zhang Sens. Actuat. B Chem., 192 (2014),pp. 642-647
    [98]
    A.Wong, T.A.Silva, F.C.Vicentini, et al. Talanta, 161 (2016),pp. 333-341
    [99]
    H.Y.Chen, J.Wang, L.Meng, et al. Chin. Chem. Lett., 27 (2016),pp. 231-234
    [100]
    A.Erdem, M.Muti, P.Papakonstantinou, et al. Analyst, 137 (2012),pp. 2129-2135
    [101]
    X.Qin, Y.Yin, H.Yu, et al. Biosens. Bioelectron., 77 (2016),pp. 752-758
    [102]
    J.Zhao, W.Guo, M.Pei, et al. Anal. Methods, 8 (2016),pp. 4391-4397
    [103]
    S.Yu, Q.Wei, B.Du, et al. Biosens. Bioelectron., 48 (2013),pp. 224-229
    [104]
    Y.Lian, F.He, H.Wang, et al. Biosens. Bioelectron., 65 (2015),pp. 314-319
    [105]
    F.Jia, N.Duan, S.Wu, et al. Microchim. Acta, 181 (2014),pp. 967-974
    [106]
    Y.Wang, J.Ping, Z.Ye, et al. Biosens. Bioelectron., 49 (2013),pp. 492-498
    [107]
    J.Wen, S.Zhou, Y.Yuan Biosens. Bioelectron., 52 (2014),pp. 44-49
    [108]
    N.Bhardwaj, S.K.Bhardwaj, J.Mehta, et al. Anal. Biochem., 505 (2016),pp. 18-25
    [109]
    Y.Wan, Z.Lin, D.Zhang, et al. Biosens. Bioelectron., 26 (2011),pp. 1959-1964
    [110]
    J.Fei, W.Dou, G.Zhao Microchim. Acta, 183 (2016),pp. 757-764
    [111]
    X.Hu, W.Dou, L.Fu, et al. Anal. Biochem., 434 (2013),pp. 218-220
    [112]
    X.Ma, Y.Jiang, F.Jia, et al. J. Microbiol. Methods, 98 (2014),pp. 94-98
    [113]
    C.Liu, D.Jiang, G.Xiang, et al. Analyst, 139 (2014),pp. 5460-5465
  • Relative Articles

  • Cited by

    Periodical cited type(76)

    1. Dehghani, M.H., Hussain Solangi, N., Mubarak, N.M. et al. MXene-based materials as adsorbents, photocatalysts, membranes and sensors for detection and removal of emerging and gaseous pollutants: A comprehensive review. Arabian Journal of Chemistry, 2025, 18(1): 106052. doi:10.1016/j.arabjc.2024.106052
    2. Sivasubramanian, P., Kumar, M., Chen, C.-L. et al. A review of metal nanomaterials-based electrochemical biosensors for environmental wastewater monitoring and their remediation. Environmental Nanotechnology, Monitoring and Management, 2024, 22: 101023. doi:10.1016/j.enmm.2024.101023
    3. Vercelli, B.. Functional Nanomaterials for Sensing Devices: Synthesis, Characterization and Applications. Nanomaterials, 2024, 14(20): 1652. doi:10.3390/nano14201652
    4. Venkatesan, M., Vusa, C.S.R., Koyappayil, A. et al. Biological recognition element anchored 2D graphene materials for the electrochemical detection of hazardous pollutants. Electrochimica Acta, 2024, 494: 144413. doi:10.1016/j.electacta.2024.144413
    5. Vaibhav, N., Kumara Swamy, B.E., Manjunatha, L.S. et al. Electrochemical determination of uric acid in presence of folic acid using synthesized cobalt oxide modified carbon paste electrode. Inorganic Chemistry Communications, 2024, 165: 112469. doi:10.1016/j.inoche.2024.112469
    6. Neiber, R.R., Samak, N.A., Xing, J. et al. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. Journal of Hazardous Materials, 2024, 465: 133203. doi:10.1016/j.jhazmat.2023.133203
    7. Britto, J.S.J., Guan, X., Tran, T.K.A. et al. Emerging Multifunctional Carbon-Nanomaterial-Based Biosensors for Cancer Diagnosis. Small Science, 2024, 4(3): 2300221. doi:10.1002/smsc.202300221
    8. Sun, Y., Liu, D. Progress in electrochemical analysis of sports doping substances with two-dimensional materials. International Journal of Electrochemical Science, 2024, 19(2): 100465. doi:10.1016/j.ijoes.2024.100465
    9. Vargas-Bernal, R.. Applications of Two-Dimensional Materials to Environmental Assessment, Remediation, and Monitoring. Environmental Applications of Carbon-Based Materials, 2024. doi:10.4018/979-8-3693-3625-0.ch005
    10. Arun, J., Nirmala, N., Dawn, S.S. Environmental Applications of Carbon-Based Materials. Environmental Applications of Carbon-Based Materials, 2024. doi:10.4018/979-8-3693-3625-0
    11. Kaur, R., Kaur, R., Singh, B. et al. Electrochemical Sensors Based on 2D Materials (2DMs) and Their Heterostructures. Engineering Materials, 2024, Part F3671: 97-127. doi:10.1007/978-981-97-6258-3_5
    12. Afzal, M.H., Pervaiz, W., Asif, M. et al. Engineering MXenes for electrochemical environmental pollutant sensing. Environmental Science: Nano, 2024. doi:10.1039/d4en00255e
    13. Festus, B., Tella, T.A. Quantification of toxic organic pollutants by electrochemical methods. Smart Nanomaterials for Environmental Applications, 2024. doi:10.1016/B978-0-443-21794-4.00016-8
    14. Trigo-López, M., Sedano, C. Foundation of sensory polymers. Sensory Polymers: From their Design to Practical Applications, 2024. doi:10.1016/B978-0-443-13394-7.00001-X
    15. Kailasa, S.K.. Nanomaterials in measurement of pollutants in environmental samples. Nanomaterials in Environmental Analysis, 2024. doi:10.1016/B978-0-12-820643-0.00001-8
    16. AL-Salman, H.N.K., Hsu, C.-Y., Nizar Jawad, Z. et al. Graphene oxide-based biosensors for detection of lung cancer: A review. Results in Chemistry, 2024, 7: 101300. doi:10.1016/j.rechem.2023.101300
    17. Li, J., Jia, B., Zhan, R. et al. Progress on Two-Dimensional Nanomaterials in Food Safety Detection | [二维纳米材料在食品安全检测中的研究进展]. Shipin Kexue/Food Science, 2023, 44(23): 353-364. doi:10.7506/spkx1002-6630-20221114-160
    18. Manikandan, R., Yoon, J.-H., Chang, S.-C. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices.. Chemosphere, 2023, 344: 140231. doi:10.1016/j.chemosphere.2023.140231
    19. Lyu, S., Chang, H., Zhang, L. et al. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors. Composites Part B: Engineering, 2023, 264: 110888. doi:10.1016/j.compositesb.2023.110888
    20. Ivanišević, I.. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. Sensors, 2023, 23(7): 3692. doi:10.3390/s23073692
    21. Li, G., Wu, M.-H., Liu, Y. et al. Facile fluorescent probe for simultaneous fluorescence detection of fluoroquinolones and copper. Chemical Papers, 2023, 77(3): 1423-1432. doi:10.1007/s11696-022-02568-4
    22. Kadhim, M.M., Rheima, A.M., Abbas, Z.S. et al. Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Advances, 2023, 13(4): 2487-2500. doi:10.1039/d2ra05808a
    23. Naqeebullah, Ahmad, A., Tabassum, H., Rashid, A. et al. Introduction: nanomaterials and electrochemical sensors. Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances, 2023. doi:10.1016/B978-0-12-822512-7.00017-X
    24. Ji, Z., Oh, W.-C. Graphene-Based Semiconducting Nanomaterials for Chemical and Biological Sensing Application Biosensors and Their Applications in Human Life and Agroecosystems. Bionanomaterials for Biosensors, Drug Delivery, and Medical Applications, 2023. doi:10.1201/9781003425427-3
    25. Yang, Y., Lovera, P., O’Riordan, A. Monitoring of Pesticides Presence in Aqueous Environment. Sensing Technologies for Real Time Monitoring of Water Quality, 2023. doi:10.1002/9781119775843.ch4
    26. Chacko, L., Late, D.J. Recent development on self-powered and portable electrochemical sensors: 2D materials perspective. 2D Materials-Based Electrochemical Sensors, 2023. doi:10.1016/B978-0-443-15293-1.00015-X
    27. Radhakrishnan, S., Rout, C.S. Introduction. 2D Materials-Based Electrochemical Sensors, 2023. doi:10.1016/B978-0-443-15293-1.00002-1
    28. Krishna Prasad, N.V., Chandra Babu Naidu, K., Anil Babu, T. et al. Electrochemical Sensors Based on Carbon Allotrope Graphene: A Review on Their Environmental Applications. Nanosistemi, Nanomateriali, Nanotehnologii, 2023, 21(1): 185-198. doi:10.15407/nnn.21.01.185
    29. Kaya, S.I., Yence, M., Ozcelikay, G. et al. Development of 2D Nanomaterials-Based Sensors for Detection of Toxic Environmental Pollutants. Springer Series in Materials Science, 2023, 332: 269-297. doi:10.1007/978-3-031-28756-5_9
    30. Mejri, A., Hamzaoui, A.H., Elfil, H. et al. Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, 102: 163-201. doi:10.1016/bs.coac.2023.03.005
    31. Zahra, Q.U.A., Fang, X., Luo, Z. et al. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Critical Reviews in Analytical Chemistry, 2023, 53(7): 1433-1454. doi:10.1080/10408347.2022.2025758
    32. Kumar, C., Painuli, R. Nanomaterials for electrochemical treatment of pollutants in water. Applications of Advanced Nanomaterials in Water Treatment, 2022. doi:10.1201/9781003252931-9
    33. Nguyet Nga, D.T., Le Nhat Trang, N., Hoang, V.-T. et al. Elucidating the roles of oxygen functional groups and defect density of electrochemically exfoliated GO on the kinetic parameters towards furazolidone detection. RSC Advances, 2022, 12(43): 27855-27867. doi:10.1039/d2ra04147b
    34. Naikoo, G.A., Arshad, F., Almas, M. et al. 2D materials, synthesis, characterization and toxicity: A critical review. Chemico-Biological Interactions, 2022, 365: 110081. doi:10.1016/j.cbi.2022.110081
    35. Pardeshi, S., Dhodapkar, R. Advances in fabrication of molecularly imprinted electrochemical sensors for detection of contaminants and toxicants. Environmental Research, 2022, 212: 113359. doi:10.1016/j.envres.2022.113359
    36. Santhosh, A.S., Sahana, K.M., Sandeep, S. et al. Synthesis and application of a 0D/2D nanocomposite for the nanomolar level detection of an antiandrogen drug. New Journal of Chemistry, 2022, 46(33): 16068-16077. doi:10.1039/d2nj01967a
    37. Prabakaran, G., Velmurugan, K., David, C.I. et al. Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. Applied Sciences (Switzerland), 2022, 12(14): 6844. doi:10.3390/app12146844
    38. Guo, Y., Liu, H., Chen, D. et al. High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy and Environment, 2022, 7(2): 229-235. doi:10.1016/j.gee.2020.09.001
    39. Mahendran, G.B., Ramalingam, S.J., Rayappan, J.B.B. et al. Amperometric Detection of Mercury Ions Using Piperazine-Functionalized Reduced Graphene Oxide as an Efficient Sensing Platform. ChemistrySelect, 2022, 7(8): e202103601. doi:10.1002/slct.202103601
    40. Khanam, Z., Gogoi, N., Srivastava, D.N. Prospective on 2D Nanomaterials for Energy and Environment: Challenges, Commercial Aspect, and the Future Research Endeavor. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_12
    41. Konwar, P.G.. Futuristic 2D Nanomaterial Composites Agro-Formulations for Sustainable Agriculture. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_10
    42. Murthy, H.C.A., Wagassa, A.N., Ravikumar, C.R. et al. Functionalized metal and metal oxide nanomaterial-based electrochemical sensors. Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications, 2022. doi:10.1016/B978-0-12-823788-5.00001-6
    43. Gupte, T., Pradeep, T. Nanosensors for water quality monitoring. Separation Science and Technology (New York), 2022, 15: 37-53. doi:10.1016/B978-0-323-90763-7.00010-X
    44. Khanam, Z., Ahmad, S., Tanweer, M.S. et al. Advancements in 2D Nanomaterial Composites-Based Electrochemical Sensors for Environmental Contaminants. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_7
    45. Padinjareveetil, A.K.K., Padil, V.V.T., Černík, M. Graphene oxide-based nanocomposite and their biomedical applications. Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, 2 Volumes, 2021, 2-2: 427-456. doi:10.1002/9783527832095.ch31
    46. Sabatini, A., Zompanti, A., Grasso, S. et al. Proof of concept study of an electrochemical sensor for inland water monitoring with a network approach. Remote Sensing, 2021, 13(20): 4026. doi:10.3390/rs13204026
    47. Yadav, N., Garg, V.K., Chhillar, A.K. et al. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere, 2021, 280: 130792. doi:10.1016/j.chemosphere.2021.130792
    48. Facure, M.H.M., Schneider, R., Lima, J.B.S. et al. Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2(3): 490-519. doi:10.3390/electrochem2030032
    49. Bakhsh, H., Buledi, J.A., Khand, N.H. et al. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Journal of Food Measurement and Characterization, 2021, 15(3): 2695-2704. doi:10.1007/s11694-021-00860-7
    50. Kumunda, C., Adekunle, A.S., Mamba, B.B. et al. Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Frontiers in Materials, 2021, 7: 616787. doi:10.3389/fmats.2020.616787
    51. Kaur, N., Kaur, R., Rana, S. Polymer and bionanomaterial-based electrochemical sensors for environmental applications. Handbook of Nanomaterials for Sensing Applications, 2021. doi:10.1016/B978-0-12-820783-3.00011-7
    52. Zhu, X., Liu, P., Xue, T. et al. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceramics International, 2021, 47(1): 173-184. doi:10.1016/j.ceramint.2020.08.121
    53. Fan, A., Yang, G., Yang, H. et al. Synthesis and application of dendritic Pt-Pd bimetallic nanoparticles in imprinted electrochemical sensor for the determination of florfenicol. Materials Today Communications, 2020, 25: 101448. doi:10.1016/j.mtcomm.2020.101448
    54. Wang, L.. Application of nanomaterials-based electrochemical sensors in public health monitoring | [纳米电化学传感器在公共卫生监测中的应用研究]. Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2020, 40(5): 52-63. doi:10.14132/j.cnki.1673-5439.2020.05.006
    55. Baek, S.H., Park, C.Y., Nguyen, T.P. et al. Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster. Food Control, 2020, 114: 107225. doi:10.1016/j.foodcont.2020.107225
    56. Sha, R., Bhattacharyya, T.K. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochimica Acta, 2020, 349: 136370. doi:10.1016/j.electacta.2020.136370
    57. Aman, E.U.M., Islam, M.F., Chowdhury, T.A. et al. An electrochemical analysis of acute contamination of environmental water and restoring of water quality using taro carbon. Applied Water Science, 2020, 10(6): 148. doi:10.1007/s13201-020-01227-x
    58. Shashikumara, J.K., Kumara Swamy, B.E., Sharma, S.C. A simple sensing approach for the determination of dopamine by poly (Yellow PX4R) pencil graphite electrode. Chemical Data Collections, 2020, 27: 100366. doi:10.1016/j.cdc.2020.100366
    59. Tyagi, D., Wang, H., Huang, W. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12(6): 3535-3559. doi:10.1039/c9nr10178k
    60. Sadriu, I., Bouden, S., Nicolle, J. et al. Molecularly imprinted polymer modified glassy carbon electrodes for the electrochemical analysis of isoproturon in water. Talanta, 2020, 207: 120222. doi:10.1016/j.talanta.2019.120222
    61. Khalid, Z.B., Nasrullah, M., Nayeem, A. et al. Application of 2D Graphene-Based Nanomaterials for Pollutant Removal from Advanced Water and Wastewater Treatment Processes. ACS Symposium Series, 2020, 1353: 191-217. doi:10.1021/bk-2020-1353.ch009
    62. Pang, Y.. Recent development and progress of electrochemical sensors for antibiotic detection. International Journal of Electrochemical Science, 2020, 15: 5232-5244. doi:10.20964/2020.06.40
    63. Shashikumara, J.K., Swamy, B.E.K. Electrochemical investigation of dopamine in presence of Uric acid and ascorbic acid at poly (Reactive Blue) modified carbon paste electrode: A voltammetric study. Sensors International, 2020, 1: 100008. doi:10.1016/j.sintl.2020.100008
    64. Chi, J., Li, J., Ren, S. et al. Construction and Application of DNA-two-dimensional Layered Nanomaterials Sensing Platform | [DNA-二维纳米片层材料传感平台的构建及其应用]. Acta Chimica Sinica, 2019, 77(12): 1230-1238. doi:10.6023/A19070262
    65. Kantize, K., Booysen, I.N., Mambanda, A. Electrochemical sensing of acetaminophen using nanocomposites comprised of cobalt phthalocyanines and multiwalled carbon nanotubes. Journal of Electroanalytical Chemistry, 2019, 850: 113391. doi:10.1016/j.jelechem.2019.113391
    66. Rayappan, J.B.B., Nesakumar, N., Bhat, L.R. et al. Electrochemical biosensors with nanointerface for food, water quality, and healthcare applications. Bioelectrochemical Interface Engineering, 2019. doi:10.1002/9781119611103.ch22
    67. Park, J., Lee, W., Kim, I. et al. Ultrasensitive detection of fibrinogen using erythrocyte membrane-draped electrochemical impedance biosensor. Sensors and Actuators, B: Chemical, 2019, 293: 296-303. doi:10.1016/j.snb.2019.05.016
    68. Magesa, F., Wu, Y., Tian, Y. et al. Graphene and graphene like 2D graphitic carbon nitride: Electrochemical detection of food colorants and toxic substances in environment. Trends in Environmental Analytical Chemistry, 2019, 23: e00064. doi:10.1016/j.teac.2019.e00064
    69. da Silveira Petruci, J.F., Piccoli, J.P., Fortes, P.R. et al. Nanomaterials in Air Pollution Trace Detection. Nanomaterials Applications for Environmental Matrices: Water, Soil and Air, 2019. doi:10.1016/B978-0-12-814829-7.00014-8
    70. Perez-Page, M., Sahoo, M., Holmes, S.M. Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts. Advanced Materials Interfaces, 2019, 6(7): 1801838. doi:10.1002/admi.201801838
    71. Gaudin, V.. Receptor-based electrochemical biosensors for the detection of contaminants in food products. Electrochemical Biosensors, 2019. doi:10.1016/B978-0-12-816491-4.00011-5
    72. Hussain, C.M., Keçili, R. Modern environmental analysis techniques for pollutants. Modern Environmental Analysis Techniques for Pollutants, 2019. doi:10.1016/C2018-0-01639-4
    73. Krishnan, S.K., Singh, E., Singh, P. et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Advances, 2019, 9(16): 8778-8781. doi:10.1039/c8ra09577a
    74. Huang, Q., Hao, L., Zhou, R. et al. Synthesis, characterization, and biological study of carboxyl- and amino-rich g-C3N4 nanosheets by different processing routes. Journal of Biomedical Nanotechnology, 2018, 14(12): 2114-2123. doi:10.1166/jbn.2018.2652
    75. Popple, D.C., Schriber, E.A., Yeung, M. et al. Competing Roles of Crystallization and Degradation of a Metal-Organic Chalcogenolate Assembly under Biphasic Solvothermal Conditions. Langmuir, 2018, 34(47): 14265-14273. doi:10.1021/acs.langmuir.8b03282
    76. Wang, J., Du, W., Huang, X. et al. A novel metronidazole electrochemical sensor based on surface imprinted vertically cross-linked two-dimensional Sn3O4 nanoplates. Analytical Methods, 2018, 10(41): 4985-4994. doi:10.1039/c8ay01824c

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.4 %FULLTEXT: 26.4 %META: 65.4 %META: 65.4 %PDF: 8.2 %PDF: 8.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.5 %其他: 0.5 %China: 35.6 %China: 35.6 %India: 4.8 %India: 4.8 %Japan: 1.4 %Japan: 1.4 %Korea Republic of: 1.4 %Korea Republic of: 1.4 %Other: 0.5 %Other: 0.5 %Portugal: 1.4 %Portugal: 1.4 %Serbia: 1.9 %Serbia: 1.9 %Seychelles: 0.5 %Seychelles: 0.5 %United States: 50.5 %United States: 50.5 %Viet Nam: 1.4 %Viet Nam: 1.4 %其他ChinaIndiaJapanKorea Republic ofOtherPortugalSerbiaSeychellesUnited StatesViet Nam

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(17) Cited by(77)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return