Citation: | Shao Su, Shimou Chen, Chunhai Fan. Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy&Environment, 2018, 3(2): 97-106. doi: 10.1016/j.gee.2017.08.005 |
[1] |
D.J.Late, B.Liu, H.Matte, et al. Adv. Funct. Mater., 22 (2012),pp. 1894-1905
|
[2] |
M.Thripuranthaka, R.V.Kashid, C.Sekhar Rout, et al. Appl. Phys. Lett., 104 (2014)
|
[3] |
P.K.Kannan, D.J.Late, H.Morgan, et al. Nanoscale, 7 (2015),pp. 13293-13312
|
[4] |
M.Chhowalla, H.S.Shin, G.Eda, et al. Nat. Chem., 5 (2013),pp. 263-275
|
[5] |
S.Z.Butler, S.M.Hollen, L.Cao, et al. ACS Nano, 7 (2013),pp. 2898-2926
|
[6] |
M.Xu, T.Liang, M.Shi, et al. Chem. Rev., 113 (2013),pp. 3766-3798
|
[7] |
H.Ramakrishna Matte, A.Gomathi, A.K.Manna, et al. Angew. Chem. Int. Ed., 49 (2010),pp. 4059-4062
|
[8] |
W.L.Song, P.Wang, L.Cao, et al. Angew. Chem. Int. Ed, 51 (2012),pp. 6498-6501
|
[9] |
K.He, C.Poole, K.F.Mak, et al. Nano Lett., 13 (2013),pp. 2931-2936
|
[10] |
C.Zhu, Z.Zeng, H.Li, et al. J. Am. Chem. Soc., 135 (2013),pp. 5998-6001
|
[11] |
Y.Zhang, B.Zheng, C.Zhu, et al. Adv. Mater., 27 (2015),pp. 935-939
|
[12] |
S.He, K.-K.Liu, S.Su, et al. Anal. Chem., 84 (2012),pp. 4622-4627
|
[13] |
Y.Wen, F.Xing, S.He, et al. Chem. Commun., 46 (2010),pp. 2596-2598
|
[14] |
D.Su Green Energy Environ., 2 (2017),pp. 70-83
|
[15] |
Y.Liu, Q.Sun, W.Li, et al. Green Energy Environ. (2017)
|
[16] |
K.J.Huang, J.Z.Zhang, Y.J.Liu, et al. Sens. Actuat. B Chem., 194 (2014),pp. 303-310
|
[17] |
K.J.Huang, Y.J.Liu, G.W.Shi, et al. Sens. Actuat. B Chem., 201 (2014),pp. 579-585
|
[18] |
D.J.Late, B.Liu, H.R.Matte, et al. ACS Nano, 6 (2012),pp. 5635-5641
|
[19] |
C.Peng, B.Jiang, Q.Liu, et al. Energy Environ. Sci., 4 (2011),pp. 2035-2040
|
[20] |
S.Su, W.Cao, W.Liu, et al. Biosens. Bioelectron., 94 (2017),pp. 552-559
|
[21] |
S.Su, J.Chao, D.Pan, et al. Electroanalysis, 27 (2015),pp. 1062-1072
|
[22] |
S.Su, C.Zhang, L.Yuwen, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 18735-18741
|
[23] |
K.J.Huang, H.L.Shuai, J.Z.Zhang Biosens. Bioelectron., 77 (2016),pp. 69-75
|
[24] |
C.S.Rout, P.D.Joshi, R.V.Kashid, et al. Sci. Rep., 3 (2013),p. 3282
|
[25] |
S.R.Kadam, D.J.Late, R.P.Panmand, et al. J. Mater. Chem. A, 3 (2015),pp. 21233-21243
|
[26] |
X.Liu, Y.Tang, L.Wang, et al. Adv. Mater., 19 (2007),pp. 1471-1474
|
[27] |
S.Su, W.Wu, J.Gao, et al. J. Mater. Chem., 22 (2012),pp. 18101-18110
|
[28] |
Y.Zhao, F.Chen, Q.Zhang, et al. NPG Asia Mater., 6 (2014),p. e131
|
[29] |
P.Wang, Y.Wan, A.Ali, et al. Sci. Chi. Chem., 59 (2016),pp. 237-242
|
[30] |
H.Xu, P.Xu, S.Gao, et al. Biosens. Bioelectron., 47 (2013),pp. 520-523
|
[31] |
Y.Tian, Y.Wang, Y.Xu, et al. Sci. Chi. Chem., 58 (2015),pp. 514-518
|
[32] |
C.Song, B.Yang, Y.Zhu, et al. Biosens. Bioelectron., 87 (2017),pp. 59-65
|
[33] |
C.Song, B.Yang, Y.Yang, et al. Sci. Chi. Chem., 59 (2016),pp. 16-29
|
[34] |
N.Solovyev, M.Vinceti, P.Grill, et al. Anal. Chim. Acta, 973 (2017),pp. 25-33
|
[35] |
M.Labib, E.H.Sargent, S.O.Kelley Chem. Rev., 116 (2016),pp. 9001-9090
|
[36] |
Y.Wan, Y.Su, X.Zhu, et al. Biosens. Bioelectron., 47 (2013),pp. 1-11
|
[37] |
Z.Zhu, Y.Su, J.Li, et al. Anal. Chem., 81 (2009),pp. 7660-7666
|
[38] |
W.Zhang, A.M.Asiri, D.Liu, et al. TrAC Trends Anal. Chem., 54 (2014),pp. 1-10
|
[39] |
M.Liang, K.Fan, Y.Pan, et al. Anal. Chem., 85 (2012),pp. 308-312
|
[40] |
Y.Dou, Z.Jiang, W.Deng, et al. J. Electroanal. Chem., 781 (2016),pp. 339-344
|
[41] |
H.Chen, X.Zuo, S.Su, et al. Analyst, 133 (2008),pp. 1182-1186
|
[42] |
S.Su, Y.He, M.Zhang, et al. Appl. Phys. Lett., 93 (2008),p. 023113
|
[43] |
F.Perreault, A.F.De Faria, M.Elimelech Chem. Soc. Rev., 44 (2015),pp. 5861-5896
|
[44] |
H.Chang, H.Wu Energy Environ. Sci., 6 (2013),pp. 3483-3507
|
[45] |
J.Wang, X.Chen, K.Wu, et al. Electroanalysis, 28 (2016),pp. 63-68
|
[46] |
P.Sahoo, B.Panigrahy, S.Sahoo, et al. Biosens. Bioelectron., 43 (2013),pp. 293-296
|
[47] |
J.Cui, S.Xu, L.Wang Sci. China Mater., 60 (2017),pp. 352-360
|
[48] |
Y.Wei, C.Gao, F.-L.Meng, et al. J. Phys. Chem. C, 116 (2011),pp. 1034-1041
|
[49] |
S.Chaiyo, E.Mehmeti, K.Žagar, et al. Anal. Chim. Acta, 918 (2016),pp. 26-34
|
[50] |
H.Zhou, X.Wang, P.Yu, et al. Analyst, 137 (2012),pp. 305-308
|
[51] |
Y.Zhang, H.Zhao, Z.Wu, et al. Biosens. Bioelectron., 48 (2013),pp. 180-187
|
[52] |
Z.-Q.Zhao, X.Chen, Q.Yang, et al. Chem. Commun., 48 (2012),pp. 2180-2182
|
[53] |
Y.Zhang, G.M.Zeng, L.Tang, et al. Anal. Chem., 87 (2015),pp. 989-996
|
[54] |
Z.Zhang, X.Fu, K.Li, et al. Sens. Actuat. B Chem., 225 (2016),pp. 453-462
|
[55] |
M.Wang, S.Zhang, Z.Ye, et al. Microchim. Acta, 182 (2015),pp. 2251-2258
|
[56] |
K.J.Huang, L.Wang, Y.J.Liu, et al. Electrochim. Acta, 107 (2013),pp. 379-387
|
[57] |
Y.Guo, Y.Wang, S.Liu, et al. Analyst, 140 (2015),pp. 551-559
|
[58] |
K.J.Huang, Y.J.Liu, Y.M.Liu, et al. J. Hazard. Mater., 276 (2014),pp. 207-215
|
[59] |
S.Su, W.Cao, C.Zhang, et al. RSC Adv., 6 (2016),pp. 76614-76620
|
[60] |
L.Chen, Y.Tang, K.Wang, et al. Electrochem. Commun., 13 (2011),pp. 133-137
|
[61] |
K.J.Huang, L.Wang, J.Li, et al. Microchim. Acta, 180 (2013),pp. 751-757
|
[62] |
X.Ma, Z.Liu, C.Qiu, et al. Microchim. Acta, 180 (2013),pp. 461-468
|
[63] |
R.Zhang, C.-L.Sun, Y.-J.Lu, et al. Anal. Chem., 87 (2015),pp. 12262-12269
|
[64] |
S.Guo, D.Wen, Y.Zhai, et al. Biosens. Bioelectron., 26 (2011),pp. 3475-3481
|
[65] |
M.S.Goh, M.Pumera Anal. Bioanal. Chem., 399 (2011),pp. 127-131
|
[66] |
T.Yang, R.Yu, H.Chen, et al. J. Electroanal. Chem., 781 (2016),pp. 70-75
|
[67] |
T.W.Chen, Z.H.Sheng, K.Wang, et al. Chem.-Asian J., 6 (2011),pp. 1210-1216
|
[68] |
C.X.Guo, Y.Lei, C.M.Li Electroanalysis, 23 (2011),pp. 885-893
|
[69] |
G.Zhu, Y.Yi, B.Zou, et al. Microchim. Acta, 182 (2015),pp. 871-877
|
[70] |
Y.Wen, W.Wen, X.Zhang, et al. Biosens. Bioelectron., 79 (2016),pp. 894-900
|
[71] |
C.Wu, Q.Cheng, K.Wu Anal. Chem., 87 (2015),pp. 3294-3299
|
[72] |
J.Luo, J.Cong, J.Liu, et al. Anal. Chim. Acta, 864 (2015),pp. 74-84
|
[73] |
X.Zhao, X.Xia, S.Yu, et al. Anal. Methods, 6 (2014),pp. 9375-9382
|
[74] |
X.Zhang, L.Wu, J.Zhou, et al. J. Electroanal. Chem., 742 (2015),pp. 97-103
|
[75] |
T.Yang, H.Chen, R.Yang, et al. Microchim. Acta, 182 (2015),pp. 2623-2628
|
[76] |
K.J.Huang, L.Wang, J.Li, et al. Sens. Actuat. B Chem., 178 (2013),pp. 671-677
|
[77] |
M.Wei, G.Zeng, Q.Lu Microchim. Acta, 181 (2014),pp. 121-127
|
[78] |
Y.Wang, S.Zhang, D.Du, et al. J. Mater. Chem., 21 (2011),pp. 5319-5325
|
[79] |
Y.Yang, A.M.Asiri, D.Du, et al. Analyst, 139 (2014),pp. 3055-3060
|
[80] |
N.K.Mogha, V.Sahu, M.Sharma, et al. Mater. Des., 111 (2016),pp. 312-320
|
[81] |
S.Wu, F.Huang, X.Lan, et al. Sens. Actuat. B Chem., 177 (2013),pp. 724-729
|
[82] |
Q.Zhou, L.Yang, G.Wang, et al. Biosens. Bioelectron., 49 (2013),pp. 25-31
|
[83] |
L.Yang, G.Wang, Y.Liu Anal. Biochem., 437 (2013),pp. 144-149
|
[84] |
K.J.Ju, J.X.Feng, J.J.Feng, et al. Microchim. Acta, 182 (2015),pp. 2427-2434
|
[85] |
Y.Li, Y.Zhang, G.Han, et al. Chin. J. Chem., 34 (2016),pp. 82-88
|
[86] |
M.Wang, J.Huang, M.Wang, et al. Food Chem., 151 (2014),pp. 191-197
|
[87] |
J.Gong, X.Miao, T.Zhou, et al. Talanta, 85 (2011),pp. 1344-1349
|
[88] |
P.Noyrod, O.Chailapakul, W.Wonsawat, et al. J. Electroanal. Chem., 719 (2014),pp. 54-59
|
[89] |
Y.Wei, R.Yang, Z.Guo, et al. Anal. Methods, 4 (2012),pp. 353-356
|
[90] |
X.Xue, Q.Wei, D.Wu, et al. Electrochim. Acta, 116 (2014),pp. 366-371
|
[91] |
R.Karthik, J.V.Kumar, S.-M.Chen, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 6547-6559
|
[92] |
X.Xi, L.Ming Anal. Methods, 4 (2012),pp. 3013-3018
|
[93] |
J.Y.Peng, C.T.Hou, X.X.Liu, et al. Talanta, 86 (2011),pp. 227-232
|
[94] |
Y.Wu, L.Tang, L.Huang, et al. Mater. Sci. Eng. C, 39 (2014),pp. 92-99
|
[95] |
S.Prashanth, N.L.Teradal, J.Seetharamappa, et al. Electrochim. Acta, 133 (2014),pp. 49-56
|
[96] |
Y.Xu, M.Gao, G.Zhang, et al. Chin. J. Catal., 36 (2015),pp. 1936-1942
|
[97] |
F.Wang, L.Zhu, J.Zhang Sens. Actuat. B Chem., 192 (2014),pp. 642-647
|
[98] |
A.Wong, T.A.Silva, F.C.Vicentini, et al. Talanta, 161 (2016),pp. 333-341
|
[99] |
H.Y.Chen, J.Wang, L.Meng, et al. Chin. Chem. Lett., 27 (2016),pp. 231-234
|
[100] |
A.Erdem, M.Muti, P.Papakonstantinou, et al. Analyst, 137 (2012),pp. 2129-2135
|
[101] |
X.Qin, Y.Yin, H.Yu, et al. Biosens. Bioelectron., 77 (2016),pp. 752-758
|
[102] |
J.Zhao, W.Guo, M.Pei, et al. Anal. Methods, 8 (2016),pp. 4391-4397
|
[103] |
S.Yu, Q.Wei, B.Du, et al. Biosens. Bioelectron., 48 (2013),pp. 224-229
|
[104] |
Y.Lian, F.He, H.Wang, et al. Biosens. Bioelectron., 65 (2015),pp. 314-319
|
[105] |
F.Jia, N.Duan, S.Wu, et al. Microchim. Acta, 181 (2014),pp. 967-974
|
[106] |
Y.Wang, J.Ping, Z.Ye, et al. Biosens. Bioelectron., 49 (2013),pp. 492-498
|
[107] |
J.Wen, S.Zhou, Y.Yuan Biosens. Bioelectron., 52 (2014),pp. 44-49
|
[108] |
N.Bhardwaj, S.K.Bhardwaj, J.Mehta, et al. Anal. Biochem., 505 (2016),pp. 18-25
|
[109] |
Y.Wan, Z.Lin, D.Zhang, et al. Biosens. Bioelectron., 26 (2011),pp. 1959-1964
|
[110] |
J.Fei, W.Dou, G.Zhao Microchim. Acta, 183 (2016),pp. 757-764
|
[111] |
X.Hu, W.Dou, L.Fu, et al. Anal. Biochem., 434 (2013),pp. 218-220
|
[112] |
X.Ma, Y.Jiang, F.Jia, et al. J. Microbiol. Methods, 98 (2014),pp. 94-98
|
[113] |
C.Liu, D.Jiang, G.Xiang, et al. Analyst, 139 (2014),pp. 5460-5465
|
1. | Dehghani, M.H., Hussain Solangi, N., Mubarak, N.M. et al. MXene-based materials as adsorbents, photocatalysts, membranes and sensors for detection and removal of emerging and gaseous pollutants: A comprehensive review. Arabian Journal of Chemistry, 2025, 18(1): 106052. doi:10.1016/j.arabjc.2024.106052 | |
2. | Sivasubramanian, P., Kumar, M., Chen, C.-L. et al. A review of metal nanomaterials-based electrochemical biosensors for environmental wastewater monitoring and their remediation. Environmental Nanotechnology, Monitoring and Management, 2024, 22: 101023. doi:10.1016/j.enmm.2024.101023 | |
3. | Vercelli, B.. Functional Nanomaterials for Sensing Devices: Synthesis, Characterization and Applications. Nanomaterials, 2024, 14(20): 1652. doi:10.3390/nano14201652 | |
4. | Venkatesan, M., Vusa, C.S.R., Koyappayil, A. et al. Biological recognition element anchored 2D graphene materials for the electrochemical detection of hazardous pollutants. Electrochimica Acta, 2024, 494: 144413. doi:10.1016/j.electacta.2024.144413 | |
5. | Vaibhav, N., Kumara Swamy, B.E., Manjunatha, L.S. et al. Electrochemical determination of uric acid in presence of folic acid using synthesized cobalt oxide modified carbon paste electrode. Inorganic Chemistry Communications, 2024, 165: 112469. doi:10.1016/j.inoche.2024.112469 | |
6. | Neiber, R.R., Samak, N.A., Xing, J. et al. Synthesis and molecular docking study of α-aminophosphonates as potential multi-targeting antibacterial agents. Journal of Hazardous Materials, 2024, 465: 133203. doi:10.1016/j.jhazmat.2023.133203 | |
7. | Britto, J.S.J., Guan, X., Tran, T.K.A. et al. Emerging Multifunctional Carbon-Nanomaterial-Based Biosensors for Cancer Diagnosis. Small Science, 2024, 4(3): 2300221. doi:10.1002/smsc.202300221 | |
8. | Sun, Y., Liu, D. Progress in electrochemical analysis of sports doping substances with two-dimensional materials. International Journal of Electrochemical Science, 2024, 19(2): 100465. doi:10.1016/j.ijoes.2024.100465 | |
9. | Vargas-Bernal, R.. Applications of Two-Dimensional Materials to Environmental Assessment, Remediation, and Monitoring. Environmental Applications of Carbon-Based Materials, 2024. doi:10.4018/979-8-3693-3625-0.ch005 | |
10. | Arun, J., Nirmala, N., Dawn, S.S. Environmental Applications of Carbon-Based Materials. Environmental Applications of Carbon-Based Materials, 2024. doi:10.4018/979-8-3693-3625-0 | |
11. | Kaur, R., Kaur, R., Singh, B. et al. Electrochemical Sensors Based on 2D Materials (2DMs) and Their Heterostructures. Engineering Materials, 2024, Part F3671: 97-127. doi:10.1007/978-981-97-6258-3_5 | |
12. | Afzal, M.H., Pervaiz, W., Asif, M. et al. Engineering MXenes for electrochemical environmental pollutant sensing. Environmental Science: Nano, 2024. doi:10.1039/d4en00255e | |
13. | Festus, B., Tella, T.A. Quantification of toxic organic pollutants by electrochemical methods. Smart Nanomaterials for Environmental Applications, 2024. doi:10.1016/B978-0-443-21794-4.00016-8 | |
14. | Trigo-López, M., Sedano, C. Foundation of sensory polymers. Sensory Polymers: From their Design to Practical Applications, 2024. doi:10.1016/B978-0-443-13394-7.00001-X | |
15. | Kailasa, S.K.. Nanomaterials in measurement of pollutants in environmental samples. Nanomaterials in Environmental Analysis, 2024. doi:10.1016/B978-0-12-820643-0.00001-8 | |
16. | AL-Salman, H.N.K., Hsu, C.-Y., Nizar Jawad, Z. et al. Graphene oxide-based biosensors for detection of lung cancer: A review. Results in Chemistry, 2024, 7: 101300. doi:10.1016/j.rechem.2023.101300 | |
17. | Li, J., Jia, B., Zhan, R. et al. Progress on Two-Dimensional Nanomaterials in Food Safety Detection | [二维纳米材料在食品安全检测中的研究进展]. Shipin Kexue/Food Science, 2023, 44(23): 353-364. doi:10.7506/spkx1002-6630-20221114-160 | |
18. | Manikandan, R., Yoon, J.-H., Chang, S.-C. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices.. Chemosphere, 2023, 344: 140231. doi:10.1016/j.chemosphere.2023.140231 | |
19. | Lyu, S., Chang, H., Zhang, L. et al. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors. Composites Part B: Engineering, 2023, 264: 110888. doi:10.1016/j.compositesb.2023.110888 | |
20. | Ivanišević, I.. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. Sensors, 2023, 23(7): 3692. doi:10.3390/s23073692 | |
21. | Li, G., Wu, M.-H., Liu, Y. et al. Facile fluorescent probe for simultaneous fluorescence detection of fluoroquinolones and copper. Chemical Papers, 2023, 77(3): 1423-1432. doi:10.1007/s11696-022-02568-4 | |
22. | Kadhim, M.M., Rheima, A.M., Abbas, Z.S. et al. Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Advances, 2023, 13(4): 2487-2500. doi:10.1039/d2ra05808a | |
23. | Naqeebullah, Ahmad, A., Tabassum, H., Rashid, A. et al. Introduction: nanomaterials and electrochemical sensors. Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances, 2023. doi:10.1016/B978-0-12-822512-7.00017-X | |
24. | Ji, Z., Oh, W.-C. Graphene-Based Semiconducting Nanomaterials for Chemical and Biological Sensing Application Biosensors and Their Applications in Human Life and Agroecosystems. Bionanomaterials for Biosensors, Drug Delivery, and Medical Applications, 2023. doi:10.1201/9781003425427-3 | |
25. | Yang, Y., Lovera, P., O’Riordan, A. Monitoring of Pesticides Presence in Aqueous Environment. Sensing Technologies for Real Time Monitoring of Water Quality, 2023. doi:10.1002/9781119775843.ch4 | |
26. | Chacko, L., Late, D.J. Recent development on self-powered and portable electrochemical sensors: 2D materials perspective. 2D Materials-Based Electrochemical Sensors, 2023. doi:10.1016/B978-0-443-15293-1.00015-X | |
27. | Radhakrishnan, S., Rout, C.S. Introduction. 2D Materials-Based Electrochemical Sensors, 2023. doi:10.1016/B978-0-443-15293-1.00002-1 | |
28. | Krishna Prasad, N.V., Chandra Babu Naidu, K., Anil Babu, T. et al. Electrochemical Sensors Based on Carbon Allotrope Graphene: A Review on Their Environmental Applications. Nanosistemi, Nanomateriali, Nanotehnologii, 2023, 21(1): 185-198. doi:10.15407/nnn.21.01.185 | |
29. | Kaya, S.I., Yence, M., Ozcelikay, G. et al. Development of 2D Nanomaterials-Based Sensors for Detection of Toxic Environmental Pollutants. Springer Series in Materials Science, 2023, 332: 269-297. doi:10.1007/978-3-031-28756-5_9 | |
30. | Mejri, A., Hamzaoui, A.H., Elfil, H. et al. Bioconjugated 2D-nanomaterials for environmental monitoring. Comprehensive Analytical Chemistry, 2023, 102: 163-201. doi:10.1016/bs.coac.2023.03.005 | |
31. | Zahra, Q.U.A., Fang, X., Luo, Z. et al. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Critical Reviews in Analytical Chemistry, 2023, 53(7): 1433-1454. doi:10.1080/10408347.2022.2025758 | |
32. | Kumar, C., Painuli, R. Nanomaterials for electrochemical treatment of pollutants in water. Applications of Advanced Nanomaterials in Water Treatment, 2022. doi:10.1201/9781003252931-9 | |
33. | Nguyet Nga, D.T., Le Nhat Trang, N., Hoang, V.-T. et al. Elucidating the roles of oxygen functional groups and defect density of electrochemically exfoliated GO on the kinetic parameters towards furazolidone detection. RSC Advances, 2022, 12(43): 27855-27867. doi:10.1039/d2ra04147b | |
34. | Naikoo, G.A., Arshad, F., Almas, M. et al. 2D materials, synthesis, characterization and toxicity: A critical review. Chemico-Biological Interactions, 2022, 365: 110081. doi:10.1016/j.cbi.2022.110081 | |
35. | Pardeshi, S., Dhodapkar, R. Advances in fabrication of molecularly imprinted electrochemical sensors for detection of contaminants and toxicants. Environmental Research, 2022, 212: 113359. doi:10.1016/j.envres.2022.113359 | |
36. | Santhosh, A.S., Sahana, K.M., Sandeep, S. et al. Synthesis and application of a 0D/2D nanocomposite for the nanomolar level detection of an antiandrogen drug. New Journal of Chemistry, 2022, 46(33): 16068-16077. doi:10.1039/d2nj01967a | |
37. | Prabakaran, G., Velmurugan, K., David, C.I. et al. Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. Applied Sciences (Switzerland), 2022, 12(14): 6844. doi:10.3390/app12146844 | |
38. | Guo, Y., Liu, H., Chen, D. et al. High recycling Fe3O4-CdTe nanocomposites for the detection of organophosphorothioate pesticide chlorpyrifos. Green Energy and Environment, 2022, 7(2): 229-235. doi:10.1016/j.gee.2020.09.001 | |
39. | Mahendran, G.B., Ramalingam, S.J., Rayappan, J.B.B. et al. Amperometric Detection of Mercury Ions Using Piperazine-Functionalized Reduced Graphene Oxide as an Efficient Sensing Platform. ChemistrySelect, 2022, 7(8): e202103601. doi:10.1002/slct.202103601 | |
40. | Khanam, Z., Gogoi, N., Srivastava, D.N. Prospective on 2D Nanomaterials for Energy and Environment: Challenges, Commercial Aspect, and the Future Research Endeavor. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_12 | |
41. | Konwar, P.G.. Futuristic 2D Nanomaterial Composites Agro-Formulations for Sustainable Agriculture. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_10 | |
42. | Murthy, H.C.A., Wagassa, A.N., Ravikumar, C.R. et al. Functionalized metal and metal oxide nanomaterial-based electrochemical sensors. Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications, 2022. doi:10.1016/B978-0-12-823788-5.00001-6 | |
43. | Gupte, T., Pradeep, T. Nanosensors for water quality monitoring. Separation Science and Technology (New York), 2022, 15: 37-53. doi:10.1016/B978-0-323-90763-7.00010-X | |
44. | Khanam, Z., Ahmad, S., Tanweer, M.S. et al. Advancements in 2D Nanomaterial Composites-Based Electrochemical Sensors for Environmental Contaminants. Materials Horizons: From Nature to Nanomaterials, 2022. doi:10.1007/978-981-16-8538-5_7 | |
45. | Padinjareveetil, A.K.K., Padil, V.V.T., Černík, M. Graphene oxide-based nanocomposite and their biomedical applications. Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, 2 Volumes, 2021, 2-2: 427-456. doi:10.1002/9783527832095.ch31 | |
46. | Sabatini, A., Zompanti, A., Grasso, S. et al. Proof of concept study of an electrochemical sensor for inland water monitoring with a network approach. Remote Sensing, 2021, 13(20): 4026. doi:10.3390/rs13204026 | |
47. | Yadav, N., Garg, V.K., Chhillar, A.K. et al. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. Chemosphere, 2021, 280: 130792. doi:10.1016/j.chemosphere.2021.130792 | |
48. | Facure, M.H.M., Schneider, R., Lima, J.B.S. et al. Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2(3): 490-519. doi:10.3390/electrochem2030032 | |
49. | Bakhsh, H., Buledi, J.A., Khand, N.H. et al. NiO nanostructures based functional none-enzymatic electrochemical sensor for ultrasensitive determination of endosulfan in vegetables. Journal of Food Measurement and Characterization, 2021, 15(3): 2695-2704. doi:10.1007/s11694-021-00860-7 | |
50. | Kumunda, C., Adekunle, A.S., Mamba, B.B. et al. Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Frontiers in Materials, 2021, 7: 616787. doi:10.3389/fmats.2020.616787 | |
51. | Kaur, N., Kaur, R., Rana, S. Polymer and bionanomaterial-based electrochemical sensors for environmental applications. Handbook of Nanomaterials for Sensing Applications, 2021. doi:10.1016/B978-0-12-820783-3.00011-7 | |
52. | Zhu, X., Liu, P., Xue, T. et al. A novel graphene-like titanium carbide MXene/Au–Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceramics International, 2021, 47(1): 173-184. doi:10.1016/j.ceramint.2020.08.121 | |
53. | Fan, A., Yang, G., Yang, H. et al. Synthesis and application of dendritic Pt-Pd bimetallic nanoparticles in imprinted electrochemical sensor for the determination of florfenicol. Materials Today Communications, 2020, 25: 101448. doi:10.1016/j.mtcomm.2020.101448 | |
54. | Wang, L.. Application of nanomaterials-based electrochemical sensors in public health monitoring | [纳米电化学传感器在公共卫生监测中的应用研究]. Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban)/Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2020, 40(5): 52-63. doi:10.14132/j.cnki.1673-5439.2020.05.006 | |
55. | Baek, S.H., Park, C.Y., Nguyen, T.P. et al. Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster. Food Control, 2020, 114: 107225. doi:10.1016/j.foodcont.2020.107225 | |
56. | Sha, R., Bhattacharyya, T.K. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochimica Acta, 2020, 349: 136370. doi:10.1016/j.electacta.2020.136370 | |
57. | Aman, E.U.M., Islam, M.F., Chowdhury, T.A. et al. An electrochemical analysis of acute contamination of environmental water and restoring of water quality using taro carbon. Applied Water Science, 2020, 10(6): 148. doi:10.1007/s13201-020-01227-x | |
58. | Shashikumara, J.K., Kumara Swamy, B.E., Sharma, S.C. A simple sensing approach for the determination of dopamine by poly (Yellow PX4R) pencil graphite electrode. Chemical Data Collections, 2020, 27: 100366. doi:10.1016/j.cdc.2020.100366 | |
59. | Tyagi, D., Wang, H., Huang, W. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale, 2020, 12(6): 3535-3559. doi:10.1039/c9nr10178k | |
60. | Sadriu, I., Bouden, S., Nicolle, J. et al. Molecularly imprinted polymer modified glassy carbon electrodes for the electrochemical analysis of isoproturon in water. Talanta, 2020, 207: 120222. doi:10.1016/j.talanta.2019.120222 | |
61. | Khalid, Z.B., Nasrullah, M., Nayeem, A. et al. Application of 2D Graphene-Based Nanomaterials for Pollutant Removal from Advanced Water and Wastewater Treatment Processes. ACS Symposium Series, 2020, 1353: 191-217. doi:10.1021/bk-2020-1353.ch009 | |
62. | Pang, Y.. Recent development and progress of electrochemical sensors for antibiotic detection. International Journal of Electrochemical Science, 2020, 15: 5232-5244. doi:10.20964/2020.06.40 | |
63. | Shashikumara, J.K., Swamy, B.E.K. Electrochemical investigation of dopamine in presence of Uric acid and ascorbic acid at poly (Reactive Blue) modified carbon paste electrode: A voltammetric study. Sensors International, 2020, 1: 100008. doi:10.1016/j.sintl.2020.100008 | |
64. | Chi, J., Li, J., Ren, S. et al. Construction and Application of DNA-two-dimensional Layered Nanomaterials Sensing Platform | [DNA-二维纳米片层材料传感平台的构建及其应用]. Acta Chimica Sinica, 2019, 77(12): 1230-1238. doi:10.6023/A19070262 | |
65. | Kantize, K., Booysen, I.N., Mambanda, A. Electrochemical sensing of acetaminophen using nanocomposites comprised of cobalt phthalocyanines and multiwalled carbon nanotubes. Journal of Electroanalytical Chemistry, 2019, 850: 113391. doi:10.1016/j.jelechem.2019.113391 | |
66. | Rayappan, J.B.B., Nesakumar, N., Bhat, L.R. et al. Electrochemical biosensors with nanointerface for food, water quality, and healthcare applications. Bioelectrochemical Interface Engineering, 2019. doi:10.1002/9781119611103.ch22 | |
67. | Park, J., Lee, W., Kim, I. et al. Ultrasensitive detection of fibrinogen using erythrocyte membrane-draped electrochemical impedance biosensor. Sensors and Actuators, B: Chemical, 2019, 293: 296-303. doi:10.1016/j.snb.2019.05.016 | |
68. | Magesa, F., Wu, Y., Tian, Y. et al. Graphene and graphene like 2D graphitic carbon nitride: Electrochemical detection of food colorants and toxic substances in environment. Trends in Environmental Analytical Chemistry, 2019, 23: e00064. doi:10.1016/j.teac.2019.e00064 | |
69. | da Silveira Petruci, J.F., Piccoli, J.P., Fortes, P.R. et al. Nanomaterials in Air Pollution Trace Detection. Nanomaterials Applications for Environmental Matrices: Water, Soil and Air, 2019. doi:10.1016/B978-0-12-814829-7.00014-8 | |
70. | Perez-Page, M., Sahoo, M., Holmes, S.M. Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts. Advanced Materials Interfaces, 2019, 6(7): 1801838. doi:10.1002/admi.201801838 | |
71. | Gaudin, V.. Receptor-based electrochemical biosensors for the detection of contaminants in food products. Electrochemical Biosensors, 2019. doi:10.1016/B978-0-12-816491-4.00011-5 | |
72. | Hussain, C.M., Keçili, R. Modern environmental analysis techniques for pollutants. Modern Environmental Analysis Techniques for Pollutants, 2019. doi:10.1016/C2018-0-01639-4 | |
73. | Krishnan, S.K., Singh, E., Singh, P. et al. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Advances, 2019, 9(16): 8778-8781. doi:10.1039/c8ra09577a | |
74. | Huang, Q., Hao, L., Zhou, R. et al. Synthesis, characterization, and biological study of carboxyl- and amino-rich g-C3N4 nanosheets by different processing routes. Journal of Biomedical Nanotechnology, 2018, 14(12): 2114-2123. doi:10.1166/jbn.2018.2652 | |
75. | Popple, D.C., Schriber, E.A., Yeung, M. et al. Competing Roles of Crystallization and Degradation of a Metal-Organic Chalcogenolate Assembly under Biphasic Solvothermal Conditions. Langmuir, 2018, 34(47): 14265-14273. doi:10.1021/acs.langmuir.8b03282 | |
76. | Wang, J., Du, W., Huang, X. et al. A novel metronidazole electrochemical sensor based on surface imprinted vertically cross-linked two-dimensional Sn3O4 nanoplates. Analytical Methods, 2018, 10(41): 4985-4994. doi:10.1039/c8ay01824c |