Liang Wang, Yantao Zhang, Zhenjie Liu, Limin Guo, Zhangquan Peng. Understanding oxygen electrochemistry in aprotic LiO2 batteries. Green Energy&Environment, 2017, 2(3): 186-203. doi: 10.1016/j.gee.2017.06.004
Citation: Liang Wang, Yantao Zhang, Zhenjie Liu, Limin Guo, Zhangquan Peng. Understanding oxygen electrochemistry in aprotic LiO2 batteries. Green Energy&Environment, 2017, 2(3): 186-203. doi: 10.1016/j.gee.2017.06.004

Understanding oxygen electrochemistry in aprotic LiO2 batteries

doi: 10.1016/j.gee.2017.06.004
  • In the past decade, the aprotic lithium–oxygen (LiO2) battery has generated a great deal of interest because theoretically it can store more energy than today's lithium-ion batteries. Although considerable research efforts have been devoted to the R&D of this potentially disruptive technology, many scientific and engineering obstacles still remain to be addressed before a practical device could be realized. In this review, we summarize recent advances in the fundamental understanding of the O2 electrochemistry in LiO2 batteries, including the O2 reduction to Li2O2 on discharge and the reverse Li2O2 oxidation on recharge and factors that exert strong influences on the redox of O2/Li2O2. In addition, challenges and perspectives are also provided for the future study of LiO2 batteries.

     

  • loading
  • [1]
    P.G.Bruce, S.A.Freunberger, L.J.Hardwick, et al. Nat. Mater., 11 (2012),pp. 19-29
    [2]
    Z.Peng, S.A.Freunberger, Y.Chen, et al. Science, 337 (2012),pp. 563-566
    [3]
    Z.Ma, X.Yuan, L.Li, et al. Energy Environ. Sci., 8 (2015),pp. 2144-2198
    [4]
    A.C.Luntz, B.D.McCloskey Chem. Rev., 114 (2014),pp. 11721-11750
    [5]
    L.Grande, E.Paillard, J.Hassoun, et al. Adv. Mater., 27 (2015),pp. 784-800
    [6]
    Z.-w.Chang, J.-j.Xu, Q.-c.Liu, et al. Adv. Energy Mater., 5 (2015),p. 1500633
    [7]
    X.Zhang, X.-G.Wang, Z.Xie, et al. Green Energy Environ., 1 (2016),pp. 4-17
    [8]
    K.M.Abraham, Z.Jiang J. Electrochem. Soc., 143 (1996),pp. 1-5
    [9]
    X.B.Cheng, R.Zhang, C.Z.Zhao, et al. Adv. Sci., 3 (2016),p. 1500213
    [10]
    C.O.Laoire, S.Mukerjee, K.M.Abraham, et al. J. Phys. Chem. C, 114 (2010),pp. 9178-9186
    [11]
    C.O.Laoire, S.Mukerjee, K.M.Abraham, et al. J. Phys. Chem. C, 113 (2009),pp. 20127-20134
    [12]
    C.J.Allen, J.Hwang, R.Kautz, et al. J. Phys. Chem. C, 116 (2012),pp. 20755-20764
    [13]
    M.J.Trahan, S.Mukerjee, E.J.Plichta, et al. J. Electrochem. Soc., 160 (2013),pp. A259-A267
    [14]
    Z.Peng, S.A.Freunberger, L.J.Hardwick, et al. Angew. Chem. Int. Ed., 50 (2011),pp. 6351-6355
    [15]
    L.Johnson, C.Li, Z.Liu, et al. Nat. Chem., 6 (2014),pp. 1091-1099
    [16]
    J.T.Frith, A.E.Russell, N.Garcia-Araez, et al. Electrochem. Commun., 46 (2014),pp. 33-35
    [17]
    Y.Zhang, X.Zhang, J.Wang, et al. J. Phys. Chem. C, 120 (2016),pp. 3690-3698
    [18]
    B.D.McCloskey, R.Scheffler, A.Speidel, et al. J. Phys. Chem. C, 116 (2012),pp. 23897-23905
    [19]
    D.G.Kwabi, M.Tulodziecki, N.Pour, et al. J. Phys. Chem. Lett., 7 (2016),pp. 1204-1212
    [20]
    B.D.Adams, C.Radtke, R.Black, et al. Energy Environ. Sci., 6 (2013),pp. 1772-1778
    [21]
    Y.-C.Lu, D.G.Kwabi, K.P.C.Yao, et al. Energy Environ. Sci., 4 (2011),pp. 2999-3007
    [22]
    Y.Li, X.Wang, S.Dong, et al. Adv. Energy Mater., 6 (2016),p. 1600751
    [23]
    Y.Chen, S.A.Freunberger, Z.Peng, et al. J. Am. Chem. Soc., 134 (2012),pp. 7952-7957
    [24]
    S.A.Freunberger, Y.Chen, Z.Peng, et al. J. Am. Chem. Soc., 133 (2011),pp. 8040-8047
    [25]
    M.M.Ottakam Thotiyl, S.A.Freunberger, Z.Peng, et al. Nat. Mater., 12 (2013),pp. 1050-1056
    [26]
    B.D.Adams, R.Black, Z.Williams, et al. Adv. Energy Mater., 5 (2015),p. 1400867
    [27]
    B.Zhou, L.Guo, Y.Zhang, et al. Adv. Mater. (2017),p. 1701568
    [28]
    K.U.Schwenke, S.Meini, X.Wu, et al. Phys. Chem. Chem. Phys., 15 (2013),pp. 11830-11839
    [29]
    B.D.McCloskey, D.S.Bethune, R.M.Shelby, et al. J. Phys. Chem. Lett., 2 (2011),pp. 1161-1166
    [30]
    M.Christy, A.Arul, A.Zahoor, et al. J. Power Sources, 342 (2017),pp. 825-835
    [31]
    D.Aurbach, B.D.McCloskey, L.F.Nazar, et al. Nat. Energy, 1 (2016),p. 16128
    [32]
    R.G.Pearson J. Am. Chem. Soc., 85 (1963),pp. 3533-3539
    [33]
    N.B.Aetukuri, B.D.McCloskey, J.M.García, et al. Nat. Chem., 7 (2015),pp. 50-56
    [34]
    V.Gutmann Coord. Chem. Rev., 18 (1976),pp. 225-255
    [35]
    W.A.Henderson J. Phys. Chem. B, 110 (2006),pp. 13177-13183
    [36]
    D.G.Kwabi, V.S.Bryantsev, T.P.Batcho, et al. Angew. Chem., 128 (2016),pp. 3181-3186
    [37]
    D.Sharon, D.Hirsberg, M.Salama, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 5300-5307
    [38]
    I.Gunasekara, S.Mukerjee, E.J.Plichta, et al. J. Electrochem. Soc., 162 (2015),pp. A1055-A1066
    [39]
    C.M.Burke, V.Pande, A.Khetan, et al. Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 9293-9298
    [40]
    S.Matsuda, Y.Kubo, K.Uosaki, et al. J. Phys. Chem. Lett., 8 (2017),pp. 1142-1146
    [41]
    S.S.Zhang, J.Read J. Power Sources, 196 (2011),pp. 2867-2870
    [42]
    Y.Wang, D.Zheng, X.-Q.Yang, et al. Energy Environ. Sci., 4 (2011),pp. 3697-3702
    [43]
    B.Xie, H.S.Lee, H.Li, et al. Electrochem. Commun., 10 (2008),pp. 1195-1197
    [44]
    Q.Wang, D.Zheng, M.E.McKinnon, et al. J. Power Sources, 274 (2015),pp. 1005-1008
    [45]
    W.Xu, J.Xiao, D.Wang, et al. J. Electrochem. Soc., 157 (2010),pp. A219-A224
    [46]
    M.Balaish, A.Kraytsberg, Y.Ein-Eli ChemElectroChem, 1 (2014),pp. 90-94
    [47]
    F.Li, S.Wu, D.Li, et al. Nat. Commun., 6 (2015),p. 7843
    [48]
    Z.Guo, X.Dong, S.Yuan, et al. J. Power Sources, 264 (2014),pp. 1-7
    [49]
    K.U.Schwenke, M.Metzger, T.Restle, et al. J. Electrochem. Soc., 162 (2015),pp. A573-A584
    [50]
    W.Xu, J.Xiao, D.Wang, et al. Electrochem. Solid-State Lett., 13 (2010),pp. A48-A51
    [51]
    Z.-L.Wang, D.Xu, J.-J.Xu, et al. Chem. Soc. Rev., 43 (2014),pp. 7746-7786
    [52]
    V.Garten, D.Weiss Aust. J. Chem., 8 (1955),pp. 68-95
    [53]
    R.E.Williford, J.-G.Zhang J. Power Sources, 194 (2009),pp. 1164-1170
    [54]
    J.Xiao, D.Mei, X.Li, et al. Nano Lett., 11 (2011),pp. 5071-5078
    [55]
    W.Kiciński, M.Szala, M.Bystrzejewski Carbon, 68 (2014),pp. 1-32
    [56]
    N.Daems, X.Sheng, I.F.J.Vankelecom, et al. J. Mater. Chem. A, 2 (2014),pp. 4085-4110
    [57]
    Z.Zhang, J.Bao, C.He, et al. Adv. Funct. Mater., 24 (2014),pp. 6826-6833
    [58]
    Y.Jing, Z.Zhou ACS Catal., 5 (2015),pp. 4309-4317
    [59]
    C.H.Choi, S.H.Park, S.I.Woo ACS Nano, 6 (2012),pp. 7084-7091
    [60]
    J.Xu, G.Dong, C.Jin, et al. ChemSusChem, 6 (2013),pp. 493-499
    [61]
    J.Liang, Y.Jiao, M.Jaroniec, et al. Angew. Chem. Int. Ed., 51 (2012),pp. 11496-11500
    [62]
    Y.-C.Lu, H.A.Gasteiger, E.Crumlin, et al. J. Electrochem. Soc., 157 (2010),pp. A1016-A1025
    [63]
    Y.-C.Lu, H.A.Gasteiger, M.C.Parent, et al. Electrochem. Solid-State Lett., 13 (2010),pp. A69-A72
    [64]
    Y.-C.Lu, Z.Xu, H.A.Gasteiger, et al. J. Am. Chem. Soc., 132 (2010),pp. 12170-12171
    [65]
    A.Débart, J.Bao, G.Armstrong, et al. J. Power Sources, 174 (2007),pp. 1177-1182
    [66]
    Z.Zhang, Y.Chen, J.Bao, et al. Part. Part. Syst. Charact., 32 (2015),pp. 680-685
    [67]
    S.H.Lim, D.H.Kim, J.Y.Byun, et al. Electrochim. Acta, 107 (2013),pp. 681-685
    [68]
    X.Gao, Y.Chen, L.Johnson, et al. Nat. Mater., 15 (2016),pp. 882-888
    [69]
    T.Ogasawara, A.l.D.bart, M.Holzapfel, et al. J. Am. Chem. Soc., 128 (2006),pp. 1390-1393
    [70]
    Y.-C.Lu, Y.Shao-Horn J. Phys. Chem. Lett., 4 (2013),pp. 93-99
    [71]
    B.M.Gallant, D.G.Kwabi, R.R.Mitchell, et al. Energy Environ. Sci., 6 (2013),pp. 2518-2528
    [72]
    J.Yang, D.Zhai, H.-H.Wang, et al. Phys. Chem. Chem. Phys., 15 (2013),pp. 3764-3771
    [73]
    X.-h.Yang, Y.-y.Xia J. Solid State Electrochem., 14 (2010),pp. 109-114
    [74]
    S.Ma, Y.Zhang, Q.Cui, et al. Chin. Phys. B, 25 (2016),p. 018204
    [75]
    B.Sun, L.Guo, Y.Ju, et al. Nano Energy, 28 (2016),pp. 486-494
    [76]
    H.-G.Jung, Y.S.Jeong, J.-B.Park, et al. ACS Nano, 7 (2013),pp. 3532-3539
    [77]
    E.Yilmaz, C.Yogi, K.Yamanaka, et al. Nano Lett., 13 (2013),pp. 4679-4684
    [78]
    Z.Jian, P.Liu, F.Li, et al. Angew. Chem. Int. Ed. Engl., 53 (2014),pp. 442-446
    [79]
    P.Bhattacharya, E.N.Nasybulin, M.H.Engelhard, et al. Adv. Funct. Mater., 24 (2014),pp. 7510-7519
    [80]
    D.Su, D.Han Seo, Y.Ju, et al. NPG Asia Mater., 8 (2016),p. e286
    [81]
    J.-L.Shui, N.K.Karan, M.Balasubramanian, et al. J. Am. Chem. Soc., 134 (2012),pp. 16654-16661
    [82]
    J.Suntivich, Y.Shao-Horn ECS Trans., 58 (2013),pp. 715-726
    [83]
    J.-J.Xu, D.Xu, Z.-L.Wang, et al. Angew. Chem. Int. Ed., 52 (2013),pp. 3887-3890
    [84]
    J.-J.Xu, Z.-L.Wang, D.Xu, et al. Energy Environ. Sci., 7 (2014),pp. 2213-2219
    [85]
    Y.Zhao, L.Xu, L.Mai, et al. Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 19569-19574
    [86]
    F.Li, R.Ohnishi, Y.Yamada, et al. Chem. Commun., 49 (2013),pp. 1175-1177
    [87]
    S.Dong, X.Chen, K.Zhang, et al. Chem. Commun., 47 (2011),pp. 11291-11293
    [88]
    B.D.McCloskey, R.Scheffler, A.Speidel, et al. J. Am. Chem. Soc., 133 (2011),pp. 18038-18041
    [89]
    H.-D.Lim, H.Gwon, H.Kim, et al. Electrochim. Acta, 90 (2013),pp. 63-70
    [90]
    Y.Chen, S.A.Freunberger, Z.Peng, et al. Nat. Chem., 5 (2013),pp. 489-494
    [91]
    H.-D.Lim, H.Song, J.Kim, et al. Angew. Chem. Int. Ed., 53 (2014),pp. 3926-3931
    [92]
    W.-J.Kwak, D.Hirshberg, D.Sharon, et al. J. Mater. Chem. A, 3 (2015),pp. 8855-8864
    [93]
    W.R.Torres, S.E.Herrera, A.Y.Tesio, et al. Electrochim. Acta, 182 (2015),pp. 1118-1123
    [94]
    D.Kundu, R.Black, B.Adams, et al. ACS Cent. Sci., 1 (2015),pp. 510-515
    [95]
    N.Feng, X.Mu, X.Zhang, et al. ACS Appl. Mater. Interfaces, 9 (2017),pp. 3733-3739
    [96]
    Y.Zhang, Q.Cui, X.Zhang, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 10717-10721
    [97]
    R.R.Mitchell, B.M.Gallant, Y.Shao-Horn, et al. J. Phys. Chem. Lett., 4 (2013),pp. 1060-1064
    [98]
    V.Viswanathan, K.S.Thygesen, J.S.Hummelshøj, et al. J. Chem. Phys., 135 (2011),p. 214704
    [99]
    H.-G.Jung, H.-S.Kim, J.-B.Park, et al. Nano Lett., 12 (2012),pp. 4333-4335
    [100]
    J.J.Xu, Z.W.Chang, Y.Wang, et al. Adv. Mater., 28 (2016),pp. 9620-9628
    [101]
    L.Zhong, R.R.Mitchell, Y.Liu, et al. Nano Lett., 13 (2013),pp. 2209-2214
    [102]
    R.R.Mitchell, B.M.Gallant, C.V.Thompson, et al. Energy Environ. Sci., 4 (2011),pp. 2952-2958
    [103]
    J.Lu, Y.Lei, K.C.Lau, et al. Nat. Commun., 4 (2013),p. 2383
    [104]
    F.Tian, M.D.Radin, D.J.Siegel Chem. Mater., 26 (2014),pp. 2952-2959
    [105]
    J.W.Morse, W.H.Casey Am. J. Sci., 288 (1988),pp. 537-560
    [106]
    T.P.Feenstra, P.L.De Bruyn J. Colloid Interface Sci., 84 (1981),pp. 66-72
    [107]
    W.Ostwald Eitschrift Phys. Chem., 22 (1897),p. 289
    [108]
    A.Dunst, V.Epp, I.Hanzu, et al. Energy Environ. Sci., 7 (2014),pp. 2739-2752
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return