Xuemei Li, Nengneng Xu, Haoran Li, Min Wang, Lei Zhang, Jinli Qiao. 3D hollow sphere CO3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy&Environment, 2017, 2(3): 316-328. doi: 10.1016/j.gee.2017.02.004
Citation: Xuemei Li, Nengneng Xu, Haoran Li, Min Wang, Lei Zhang, Jinli Qiao. 3D hollow sphere CO3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy&Environment, 2017, 2(3): 316-328. doi: 10.1016/j.gee.2017.02.004

3D hollow sphere CO3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery

doi: 10.1016/j.gee.2017.02.004
  • There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO2 nanotube-supported Co3O4 nanoparticles and its carbon nanotubes hybrid material (Co3O4/MnO2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co3O4/MnO2, bare MnO2 nanotubes and CNTs, the hybrid Co3O4/MnO2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition (0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage (∼1.47 V), a high discharge peak power density (340 mW cm−2) and a large specific capacity (775 mAh g−1 at 10 mA cm−2) for the primary Zn-air battery, a small charge–discharge voltage gap and a high cycle-life (504 cycles at 10 mA cm−2 with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process.

     

  • loading
  • [1]
    P.Sapkota, H.Kim J. Ind. Eng. Chem., 15 (2009),pp. 445-450
    [2]
    P.Pei, K.Wang, Z.Ma Appl. Energy, 128 (2014),pp. 315-324
    [3]
    J.Liu, B.Chen, Y.Kou, et al. J. Mater. Chem. A, 4 (2016),pp. 11060-11068
    [4]
    J.Liu, B.Chen, Z.Ni, et al. ChemElectroChem, 3 (2016),pp. 537-551
    [5]
    C.Liu, F.Li, L.P.Ma, et al. Adv. Mater, 22 (2010),pp. E28-E62
    [6]
    X.Zhang, R.Gao, Z.Li, et al. Electrochim. Acta, 201 (2016),pp. 134-141
    [7]
    X.Zhang, X.-G.Wang, Z.Xie, et al. Green Energy Environ., 1 (2016),pp. 4-17
    [8]
    M.Prabu, P.Ramakrishnan, S.Shanmugam Electrochem. Commun., 41 (2014),pp. 59-63
    [9]
    H.Wang, H.Dai Chem. Soc. Rev., 42 (2013),pp. 3088-3113
    [10]
    P.-C.Li, C.-C.Hu, H.Noda, et al. J. Power Sources, 298 (2015),pp. 102-113
    [11]
    Z.Chen, A.Yu, D.Higgins, et al. Nano Lett., 12 (2012),pp. 1946-1952
    [12]
    A.Devadoss, P.Sudhagar, S.Das, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 4864-4871
    [13]
    Y.Bing, H.Liu, L.Zhang, et al. Chem. Soc. Rev., 39 (2010),pp. 2184-2202
    [14]
    A.Shan, M.Cheng, H.Fan, et al. Prog. Nat. Sci.: Mater. Int., 24 (2014),pp. 175-178
    [15]
    F.Cheng, J.Shen, B.Peng, et al. Nat. Chem., 3 (2011),pp. 79-84
    [16]
    D.U.Lee, M.G.Park, H.W.Park, et al. Electrochem. Commun., 60 (2015),pp. 38-41
    [17]
    Y.Liang, H.Wang, J.Zhou, et al. J. Am. Chem. Soc., 134 (2012),pp. 3517-3523
    [18]
    R.Cao, J.-S.Lee, M.Liu, et al. Adv. Energy Mater., 2 (2012),pp. 816-829
    [19]
    Y.Li, H.Dai Chem. Soc. Rev., 43 (2014),pp. 5257-5275
    [20]
    B.Li, X.Ge, F.W.Goh, et al. Nanoscale, 7 (2015),pp. 1830-1838
    [21]
    X.Ge, Y.Liu, F.W.Goh, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 12684-12691
    [22]
    M.Liu, Y.Song, S.He, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 4214-4222
    [23]
    Q.Tang, J.Liu, L.K.Shrestha, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 18922-18929
    [24]
    Y.-R.Liu, G.-Q.Han, X.Li, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 12976-12982
    [25]
    T.Cetinkaya, H.Akbulut, M.Tokur, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 9746-9754
    [26]
    J.Li, S.Xiong, X.Li, et al. Nanoscale, 5 (2013),pp. 2045-2054
    [27]
    G.Du, X.Liu, Y.Zong, et al. Nanoscale, 5 (2013),pp. 4657-4661
    [28]
    D.U.Lee, B.J.Kim, Z.Chen J. Mater. Chem. A, 1 (2013),pp. 4754-4762
    [29]
    N.Xu, Y.Liu, S.Zhang, et al. Sci. Rep., 6 (2016),pp. 33590-33600
    [30]
    Z.Wang, S.Xiao, Y.An, et al. ACS Appl. Mater. Interfaces, 8 (2016),pp. 13348-13359
    [31]
    J.Song, C.Zhu, S.Fu, et al. J. Mater. Chem. A, 4 (2016),pp. 4864-4870
    [32]
    J.Xiao, X.Bian, L.Liao, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 17654-17660
    [33]
    D.U.Lee, H.W.Park, M.G.Park, et al. ACS Appl. Mater. Interfaces, 7 (2015),pp. 902-910
    [34]
    M.Prabu, P.Ramakrishnan, H.Nara, et al. ACS Appl. Mater. Interfaces, 6 (2014),pp. 16545-16555
    [35]
    D.Yang, A.Velamakanni, G.Bozoklu, et al. Carbon, 47 (2009),pp. 145-152
    [36]
    K.N.Jung, S.M.Hwang, M.S.Park, et al. Sci. Rep., 5 (2015),pp. 7665-7675
    [37]
    M.Wu, E.Zhang, Q.Guo, et al. Appl. Energy, 175 (2016),pp. 468-478
    [38]
    J.Hu, L.Wang, L.Shi, et al. J. Power Sources, 269 (2014),pp. 144-151
    [39]
    C.Ma, N.Xu, J.Qiao, et al. Int. J. Hydrogen Energy, 41 (2016),pp. 9211-9218
    [40]
    Y.Li, M.Gong, Y.Liang, et al. Nat. Commun., 4 (2013),pp. 1805-1811
    [41]
    Z.Jiang, Z.-J.Jiang, T.Maiyalagan, et al. J. Mater. Chem. A, 4 (2016),pp. 5877-5889
    [42]
    N.Xu, J.Qiao, X.Zhang, et al. Appl. Energy, 170 (2016),pp. 495-504
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (248) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return