Citation: | Yuyu Bu, Jin-Ping Ao. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy&Environment, 2017, 2(4): 331-362. doi: 10.1016/j.gee.2017.02.003 |
[1] |
B.A.Shaw, R.G.Kelly Electrochem. Soc. Interface (2006),pp. 24-26
|
[2] |
J.Ma, J.Wen J. Alloys Compd., 496 (2010),pp. 110-115
|
[3] |
C.Christodoulou, G.Glass, J.Webb, et al. Corros. Sci., 52 (2010),pp. 2671-2679
|
[4] |
M.B.González, S.B.Saidman Corros. Sci., 53 (2011),pp. 276-282
|
[5] |
Y.Ohko, S.Saitoh, T.Tatsuma, et al. J. Electrochem. Soc., 148 (2001),pp. B24-B28
|
[6] |
H.W.Park, K.Y.Kim, W.Y.Choi J. Phys. Chem. B, 106 (2002),pp. 4775-4781
|
[7] |
R.Liu, Z.Zheng, J.Spurgeon, et al. Energy Environ. Sci., 7 (2014),pp. 2504-2517
|
[8] |
Z.Zhang, J.T.YatesJr. Chem. Rev., 112 (2012),pp. 5520-5551
|
[9] |
L.Song, X.Ma, Z.Chen, et al. Corros. Sci., 87 (2014),pp. 427-437
|
[10] |
L.Song, Z.Chen Corros. Sci., 86 (2014),pp. 318-325
|
[11] |
L.Song, Z.Chen J. Electrochem. Soc., 162 (2015),pp. C79-C84
|
[12] |
M.Sun, Z.Chen, Y.Bu, et al. Corros. Sci., 82 (2014),pp. 77-84
|
[13] |
A.Fujishima, K.Honda Nature, 238 (1972),pp. 37-38
|
[14] |
B.O'regan, M.Gratzel Nature, 353 (1991),pp. 737-740
|
[15] |
S.Rani, S.C.Roy, M.Paulose, et al. Phys. Chem. Chem. Phys., 12 (2010),pp. 2780-2800
|
[16] |
M.Paulose, O.K.Varghese, G.K.Mor, et al. Nanotechnology, 17 (2005),pp. 398-402
|
[17] |
J.Yuan, S.Tsujikawa J. Electrochem. Soc., 142 (1995),pp. 3444-3450
|
[18] |
C.X.Lei, H.Zhou, Z.D.Feng, et al. Appl. Surf. Sci., 257 (2011),pp. 7330-7334
|
[19] |
C.X.Lei, H.Zhou, Z.D.Feng J. Alloys. Compd., 542 (2012),pp. 164-169
|
[20] |
J.Li, C.J.Lin, C.G.Lin J. Electrochem. Soc., 158 (2011),pp. C55-C62
|
[21] |
H.Yun, C.J.Lin, J.Li, et al. Appl. Surf. Sci., 255 (2008),pp. 2113-2117
|
[22] |
M.C.Li, S.Z.Luo, P.F.Wu, et al. Electrochim. Acta, 50 (2005),pp. 3401-3406
|
[23] |
C.X.Lei, H.Zhou, C.Wang, et al. Electrochim. Acta, 87 (2013),pp. 245-249
|
[24] |
Y.F.Zhu, R.G.Du, W.Chen, et al. Electrochem. Commun., 12 (2010),pp. 1626-1629
|
[25] |
G.X.Shen, Y.C.Chen, C.J.Lin Thin Solid Films, 489 (2005),pp. 130-136
|
[26] |
M.M.Sun, Z.Y.Chen, J.Q.Yu Electrochim. Acta, 109 (2013),pp. 13-19
|
[27] |
S.N.Li, J.J.Fu Corros. Sci., 68 (2013),pp. 101-110
|
[28] |
S.N.Li, Q.Wang, T.Chen, et al. Nanoscale Res. Lett., 7 (2012),pp. 1-10
|
[29] |
Y.Liu, C.Xu, Z.D.Feng Appl. Surf. Sci., 314 (2014),pp. 392-399
|
[30] |
J.Li, H.Yun, C.J.Lin J. Electrochem. Soc., 154 (2007),pp. C631-C636
|
[31] |
J.Li, C.J.Lin, Y.K.Lai, et al. Surf. Coat. Technol., 205 (2010),pp. 557-564
|
[32] |
C.X.Lei, Z.D.Feng, H.Zhou Electrochim. Acta, 68 (2012),pp. 134-140
|
[33] |
J.Li, C.J.Lin, J.T.Li, et al. Thin Solid Films, 519 (2011),pp. 5494-5502
|
[34] |
Z.Q.Lin, Y.K.Lai, R.G.Hu, et al. Electrochim. Acta, 55 (2010),pp. 8717-8723
|
[35] |
H.Li, X.T.Wang, Y.Liu, et al. Corros. Sci., 82 (2014),pp. 145-153
|
[36] |
R.H.Baughman, A.A.Zakhidov, W.A.de Heer Science, 297 (2002),pp. 787-792
|
[37] |
G.Jiang, Z.Lin, L.Zhu, et al. Carbon, 48 (2010),pp. 3369-3375
|
[38] |
W.Liu, Y.G.Wang, G.Su, et al. Carbon, 50 (2012),pp. 3641-3648
|
[39] |
X.Q.Guo, W.Liu, L.X.Cao, et al. Appl. Surf. Sci., 283 (2013),pp. 498-504
|
[40] |
C.X.Lei, Y.Liu, H.Zhou, et al. Corros. Sci., 68 (2013),pp. 214-222
|
[41] |
J.G.Mavroides, J.A.Kafalas, D.F.Kolesar Appl. Phys. Lett., 28 (1976),pp. 241-243
|
[42] |
M.S.Wrighton, P.T.Wolczanski, A.B.Ellis J. Solid State Chem., 22 (1977),pp. 17-29
|
[43] |
S.Ahuja, T.R.N.Kutty J. Photochem. Photobiol. A, 97 (1996),pp. 99-107
|
[44] |
M.Matsumura, M.Hiramoto, H.Tsubomura J. Electrochem. Soc., 130 (1983),pp. 326-330
|
[45] |
V.Subramanian, R.K.Roeder, E.E.Wolf Ind. Eng. Chem. Res., 45 (2006),pp. 2187-2193
|
[46] |
Y.Liu, L.Xie, Y.Li, et al. J. Power Sources, 183 (2008),pp. 701-707
|
[47] |
H.R.Zhang, G.S.Miao, X.P.Ma, et al. Int. J. Photoenergy, 2013 (2013),pp. 1-6
|
[48] |
J.Poth, R.Haberkorn, H.P.Beck J. Eur. Ceram. Soc., 20 (2000),pp. 707-713
|
[49] |
U.K.N.Din, T.H.T.Aziz, M.M.Salleh, et al. Int. J. Miner., Metall. Mater., 23 (2016),pp. 109-115
|
[50] |
Y.Y.Bu, W.B.Li, J.Q.Yu, et al. Acta Phys. Chim. Sin., 27 (2011),pp. 2393-2399
|
[51] |
W.Fan, L.Niinistö Mater. Res. Bull., 29 (1994),pp. 451-458
|
[52] |
Z.B.Jiao, T.Chen, J.Y.Xiong, et al. Sci. Rep., 3 (2013),pp. 1-6
|
[53] |
Y.Ohko, S.Saitoh, T.Tatsuma, et al. Electrochem. Solid-State Lett., 5 (2002),pp. B9-B12
|
[54] |
H.Kato, A.Kudo J. Phys. Chem. B, 106 (2002),pp. 5029-5034
|
[55] |
J.W.Liu, G.Chen, Z.H.Li, et al. J. Solid State Chem., 179 (2006),pp. 3704-3708
|
[56] |
S.Tonda, S.Kumar, O.Anjaneyulu, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 23819-23828
|
[57] |
D.F.Wang, J.H.Ye, T.Kako, et al. J. Phys. Chem. B, 110 (2006),pp. 15824-15830
|
[58] |
S.X.Ouyang, H.Tong, N.Umezawa, et al. J. Am. Chem. Soc., 134 (2012),pp. 1974-1977
|
[59] |
R.B.Comes, P.V.Sushko, S.M.Heald, et al. Chem. Mater., 26 (2014),pp. 7073-7082
|
[60] |
Q.Wang, T.Hisatomi, S.S.K.Ma, et al. Chem. Mater., 26 (2014),pp. 4144-4150
|
[61] |
K.Iwashina, A.Kudo J. Am. Chem. Soc., 133 (2011),pp. 13272-13275
|
[62] |
T.H.Xie, X.Y.Sun, J.Lin J. Phys. Chem. C, 112 (2008),pp. 9753-9759
|
[63] |
J.S.Wang, S.Yin, M.Komatsu, et al. J. Photochem. Photobiol. A, 165 (2004),pp. 149-156
|
[64] |
H.Yu, S.C.Yan, Z.S.Li, et al. Int. J. Hydrogen Energy, 37 (2012),pp. 12120-12127
|
[65] |
T.P.Cao, Y.J.Li, C.H.Wang, et al. Langmuir, 27 (2011),pp. 2946-2952
|
[66] |
S.Choudhary, A.Solanki, S.Upadhyay, et al. J. Solid State Electrochem., 17 (2013),pp. 2531-2538
|
[67] |
D.Sharma, A.Verma, V.R.Satsangi, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 4189-4197
|
[68] |
T.Tatsuma, S.Saitoh, Y.Ohko, et al. Chem. Mater., 13 (2001),pp. 2838-2842
|
[69] |
R.Subasri, T.Shinohara Electrochem. Commun., 5 (2003),pp. 897-902
|
[70] |
R.Subasri, S.Deshpande, S.Seal, et al. Electrochem. Solid-State Lett., 9 (2006),pp. B1-B4
|
[71] |
M.Miyauchi, A.Nakajima, T.Watanabe, et al. Chem. Mater., 14 (2002),pp. 2812-2816
|
[72] |
J.Luo, P.A.Maggard Adv. Mater., 18 (2006),pp. 514-517
|
[73] |
S.Burnside, J.E.Moser, K.Brooks, et al. J. Phys. Chem. B, 103 (1999),pp. 9328-9332
|
[74] |
Y.Zhang, Y.Y.Bu, J.Q.Yu, et al. J. Nanopart. Res., 15 (2013),pp. 1-8
|
[75] |
Y.F.Zhu, L.Xu, J.Hu, et al. Electrochim. Acta, 121 (2014),pp. 361-368
|
[76] |
Q.P.Luo, X.Y.Yu, B.X.Lei, et al. J. Phys. Chem. C, 116 (2012),pp. 8111-8117
|
[77] |
Z.B.Yu, Y.P.Xie, G.Liu, et al. J. Mater. Chem. A, 1 (2013),pp. 2773-2776
|
[78] |
C.Yu, K.Yang, Y.Xie, et al. Nanoscale, 5 (2013),pp. 2142-2151
|
[79] |
J.X.Sun, Y.P.Yuan, L.G.Qiu, et al. Dalton Trans., 41 (2012),pp. 6756-6763
|
[80] |
W.W.He, H.K.Kim, W.G.Wamer, et al. J. Am. Chem. Soc., 136 (2013),pp. 750-757
|
[81] |
M.M.Sun, Z.Y.Chen, Y.Y.Bu, et al. Corros. Sci., 82 (2014),pp. 77-84
|
[82] |
J.P.Jing, Z.Y.Chen, Y.Y.Bu Int. J. Electrochem. Sci., 10 (2015),pp. 8783-8796
|
[83] |
H.M.Xu, W.Liu, L.X.Cao, et al. Appl. Surf. Sci., 301 (2014),pp. 508-514
|
[84] |
X.C.Wang, K.Maeda, A.Thomas, et al. Nat. Mater., 8 (2009),pp. 76-80
|
[85] |
S.C.Yan, Z.S.Li, Z.G.Zou Langmuir, 25 (2009),pp. 10397-10401
|
[86] |
Z.J.Huang, F.B.Li, B.F.Chen, et al. Appl. Catal. B, 136 (2013),pp. 269-277
|
[87] |
G.D.Ding, W.T.Wang, T.Jiang, et al. ChemCatChem, 5 (2013),pp. 192-200
|
[88] |
J.S.Zhang, X.F.Chen, K.Takanabe, et al. Angew. Chem. Int. Ed., 49 (2010),pp. 441-444
|
[89] |
Y.Y.Bu, Z.Y.Chen, J.Q.Yu, et al. Electrochim. Acta, 88 (2013),pp. 294-300
|
[90] |
Y.Y.Bu, Z.Y.Chen RSC Adv., 4 (2014),pp. 45397-45406
|
[91] |
M.M.Sun, Z.Y.Chen, Y.Y.Bu J. Alloys Compd., 618 (2015),pp. 734-741
|
[92] |
Y.Y.Bu, Z.Y.Chen Electrochim. Acta, 144 (2014),pp. 42-49
|
[93] |
T.Tatsuma, S.Saitoh, P.Ngaotrakanwiwat, et al. Langmuir, 18 (2002),pp. 7777-7779
|
[94] |
H.Park, A.Bak, T.H.Jeon, et al. Appl. Catal. B, 115 (2012),pp. 74-80
|
[95] |
P.Ngaotrakanwiwat, S.Saitoh, Y.Ohko, et al. J. Electrochem. Soc., 150 (2003),pp. A1405-A1407
|
[96] |
P.Ngaotrakanwiwat, T.Tatsuma J. Electroanal. Chem., 573 (2004),pp. 263-269
|
[97] |
R.Subasri, T.Shinohara, K.Mori Sci. Technol. Adv. Mater., 6 (2005),pp. 501-507
|
[98] |
Z.Xia, X.Zhou, J.Li, et al. Sci. Bull., 60 (2015),pp. 1395-1402
|
[99] |
N.Lu, Y.Su, J.Li, et al. Sci. Bull., 60 (2015),pp. 1281-1286
|
[100] |
C.Meng, Z.Liu, T.Zhang, et al. Green Chem., 17 (2015),pp. 2764-2768
|
[101] |
Z.Liu, Z.Hu, H.Huang, et al. J. Mater. Chem., 22 (2012),pp. 22120-22125
|
[1] | Junzhu Yang, Chi-Kit Sou, Yuan Lu. Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion. Green Energy&Environment, 2024, 9(9): 1366-1383. doi: 10.1016/j.gee.2023.10.002 |
[2] | Yang Liu, Yu Zhang, Zhao-Di Yang, Liqiang Jing. Recent advances in phenazine-linked porous catalysts toward photo/electrocatalytic applications and mechanism. Green Energy&Environment, 2024, 9(10): 1518-1549. doi: 10.1016/j.gee.2023.12.006 |
[3] | Jinhao Li, Jing Ren, Shaoquan Li, Guangchao Li, Molly Meng-Jung Li, Rengui Li, Young Soo Kang, Xiaoxin Zou, Yong Luo, Bin Liu, Yufei Zhao. Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges. Green Energy&Environment, 2024, 9(5): 859-876. doi: 10.1016/j.gee.2023.05.003 |
[4] | Jiacheng Bao, Xin Sun, Ping Ning, Kai Li, Jie Yang, Fei Wang, Lei Shi, Maohong Fan. Industrial solid wastes to environmental protection materials for removal of gaseous pollutants: A review. Green Energy&Environment. doi: 10.1016/j.gee.2024.01.006 |
[5] | Yanqin Li, Junqi Tian, Zhisong Liu, Zhongqi Liu, Dong Dong, Fu Wang, Wei Wang, Minmin Liu, Jianming Dan, Yongsheng Li, Feng Yu, Bin Dai, Yunbo Yu. Robust photo-assisted removal of NO at room temperature: Experimental and density functional theory calculation with optical carrier. Green Energy&Environment, 2023, 8(4): 1102-1116. doi: 10.1016/j.gee.2022.01.004 |
[6] | Bolin Wang, Chunxiao Jin, Shujuan Shao, Yuxue Yue, Yuteng Zhang, Saisai Wang, Renqin Chang, Haifeng Zhang, Jia Zhao, Xiaonian Li. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy&Environment, 2023, 8(4): 1128-1140. doi: 10.1016/j.gee.2022.01.005 |
[7] | Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization. Green Energy&Environment, 2023, 8(2): 383-405. doi: 10.1016/j.gee.2022.02.011 |
[8] | Fang Li, Qian Zhang, Jing Liu, Nan Cui, Guoqing Guan, Wei Huang. Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas. Green Energy&Environment, 2022, 7(6): 1390-1400. doi: 10.1016/j.gee.2022.01.015 |
[9] | Zexu Chi, Jingyun Zhao, Yi Zhang, Han Yu, Hongbing Yu. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review. Green Energy&Environment, 2022, 7(3): 372-393. doi: 10.1016/j.gee.2021.05.002 |
[10] | Sheng Chu, Pengfei Ou, Roksana Tonny Rashid, Yuyang Pan, Daolun Liang, Huiyan Zhang, Jun Song, Zetian Mi. Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering. Green Energy&Environment, 2022, 7(3): 545-553. doi: 10.1016/j.gee.2020.11.015 |
[11] | Harin Yoo, Doohwan Lee, Jung Hyeun Kim. High performance of TiO2/CuxO photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell. Green Energy&Environment, 2022, 7(4): 704-711. doi: 10.1016/j.gee.2020.11.012 |
[12] | Yaping Zhang, Yuyu Bu, Lin Wang, Jin-Ping Ao. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review. Green Energy&Environment, 2021, 6(4): 479-495. doi: 10.1016/j.gee.2020.11.007 |
[13] | Zhijia Du, Christopher J. Janke, Jianlin Li, David L. Wood. High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries. Green Energy&Environment, 2019, 4(4): 375-381. doi: 10.1016/j.gee.2019.04.001 |
[14] | Xiaohong Wu, Kecheng Pan, Mengmin Jia, Yufei Ren, Hongyan He, Lan Zhang, Suojiang Zhang. Electrolyte for lithium protection: From liquid to solid. Green Energy&Environment, 2019, 4(4): 360-374. doi: 10.1016/j.gee.2019.05.003 |
[15] | Tian Xie, Tao Zheng, Ruiling Wang, Yuyu Bu, Jin-Ping Ao. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy&Environment, 2018, 3(3): 239-246. doi: 10.1016/j.gee.2018.01.003 |
[16] | Xuan Wu, Jie Xu, George Y. Chen, Rong Fan, Xiaokong Liu, Haolan Xu. Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh. Green Energy&Environment, 2017, 2(4): 387-392. doi: 10.1016/j.gee.2017.02.002 |
[17] | Hu Zhao, Bao Qiu, Haocheng Guo, Kai Jia, Zhaoping Liu, Yonggao Xia. Characterization of Li-rich layered oxides by using transmission electron microscope. Green Energy&Environment, 2017, 2(3): 174-185. doi: 10.1016/j.gee.2017.05.005 |
[18] | Ee Teng Kho, Tze Hao Tan, Emma Lovell, Roong Jien Wong, Jason Scott, Rose Amal. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy&Environment, 2017, 2(3): 204-217. doi: 10.1016/j.gee.2017.06.003 |
[19] | Dong Su. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy&Environment, 2017, 2(2): 70-83. doi: 10.1016/j.gee.2017.02.001 |
[20] | Jiajie Cen, Qiyuan Wu, Mingzhao Liu, Alexander Orlov. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress. Green Energy&Environment, 2017, 2(2): 100-111. doi: 10.1016/j.gee.2017.03.001 |
1. | Zhang, S., Li, W., Li, G. et al. High performance DC-TENG based on coupling of mismatched number of triboelectric units and electrodes with mechanical switches for metal surface anti-corrosion. Nano Energy, 2024. doi:10.1016/j.nanoen.2024.110093 | |
2. | Ebrahimi, M., Bahrami, A., Atapour, M. et al. Chemical bath co-deposition of Co3O4 and In2O3 on TiO2 nanotubes, aiming for photoanodes with improved photoelectrochemical properties. Journal of Alloys and Compounds, 2024. doi:10.1016/j.jallcom.2024.175359 | |
3. | Xie, H., Wang, Z., Nie, G. et al. Integration of functional modules in a unified photoelectrochemical device for highly efficient solar-driven cathodic metal protection. Applied Catalysis B: Environmental, 2024. doi:10.1016/j.apcatb.2024.124164 | |
4. | Rabizadeh, T.. Evaluating the performance of corn peptone in preventing the corrosion of mild steel immersed in HCl. Materials and Corrosion, 2024, 75(9): 1142-1154. doi:10.1002/maco.202414346 | |
5. | Maka, A.O.M., Chaudhary, T.N., Alaswad, G. et al. Applications of solar photovoltaics in powering cathodic protection systems: a review. Clean Technologies and Environmental Policy, 2024, 26(9): 2755-2776. doi:10.1007/s10098-024-02750-0 | |
6. | Aspalter, A., Braidt, R., Duchoslav, J. et al. Photo-induced processes on ZnO and its possible impact on cathodic delamination of organic coatings on galvanised steel. Electrochimica Acta, 2024. doi:10.1016/j.electacta.2024.144453 | |
7. | Qian, F., Tian, J., Guo, C. et al. Dual-function photoelectrode of TiO2 nanotube array/CdZnS/ZnS heterojunction for efficient photoelectrochemical cathodic protection and anti-biofouling. Journal of Materials Science and Technology, 2024. doi:10.1016/j.jmst.2023.10.064 | |
8. | Zhang, Y., Liu, X., Zhang, X. et al. Indium sulfide-sensitized 2D stannum indium sulfide nanosheet arrays promoting photoelectrochemical conversion efficiency in cathodic protection. Materials Today Energy, 2024. doi:10.1016/j.mtener.2024.101563 | |
9. | Yao, H., Zhang, R., Wen, Y. et al. Metal-organic framework [NH2-MIL-53(Al)] functionalized TiO2 nanotube photoanodes for highly stable and efficient photoelectrochemical cathodic protection of nickel-coated Mg alloy. Journal of Materials Science and Technology, 2024. doi:10.1016/j.jmst.2023.09.038 | |
10. | Collins, D.K., Schichtl, Z.G., Nesbitt, N.T. et al. Utilizing three-terminal, interdigitated back contact Si solar cells as a platform to study the durability of photoelectrodes for solar fuel production. Energy and Environmental Science, 2024, 17(10): 3329-3337. doi:10.1039/d4ee00349g | |
11. | Yingna Zhao, Su, X., Qing, D., Wang, J. et al. WO3/SrTiO3 Heterojunction Composite: A Promising Photoanode for Photochemical Cathodic Protection. Russian Journal of Physical Chemistry A, 2024, 98(4): 795-804. doi:10.1134/S0036024424040319 | |
12. | Wang, J., Kong, C., Zeng, X. et al. Preparation and Photoelectrochemical Cathodic Protection Properties of F-Doped SrTiO3 | [F 掺杂 SrTiO3 的制备及光电化学阴极保护性能研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2024, 53(4): 707-713. ![]() | |
13. | Ye, M., Yu, J., Wang, T. et al. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel. Journal of the Chinese Society of Corrosion and Protection, 2024, 44(2): 372-380. doi:10.11902/1005.4537.2023.114 | |
14. | Zhu, J., Zhang, X., Yang, Z. et al. Enhancing photocathodic protection of Q235 carbon steel by co-sensitizing TiO2 nanotubes with CdIn2S4 nanogranules and WO3 nanoplates. Journal of Alloys and Compounds, 2024. doi:10.1016/j.jallcom.2023.173184 | |
15. | Ebrahimi, M., Atapour, M., Bahrami, A. et al. Enhanced photoelectrochemical cathodic protection of stainless steel under visible light using Co3O4–ZnO-modified TiO2 nanotubes. Applied Physics A: Materials Science and Processing, 2024, 130(3): 176. doi:10.1007/s00339-024-07338-5 | |
16. | Cai, J., Li, Y., Cai, Z. et al. Epitaxial heterostructure of CdIn2S4/WO3 with the tunable built-in field for efficient photocathodic protection of 304SS and Q235. Surfaces and Interfaces, 2024. doi:10.1016/j.surfin.2023.103791 | |
17. | Pan, C., He, J., Zhu, J. et al. Corrosion Control by Carbon-Based Nanomaterials: A Review. ACS Applied Nano Materials, 2024, 7(3): 2515-2528. doi:10.1021/acsanm.3c05547 | |
18. | El ouardi, M., Idrissi, A.E., Ahsaine, H.A. et al. Current advances on nanostructured oxide photoelectrocatalysts for water splitting: A comprehensive review. Surfaces and Interfaces, 2024. doi:10.1016/j.surfin.2024.103850 | |
19. | Dai, Y., Liu, N., Wang, C. et al. NiCo-layered double hydroxide modified TiO2 nanotube arrays and its application in photoelectrochemical cathodic protection of 304 stainless steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. doi:10.1016/j.colsurfa.2023.132633 | |
20. | Jin, X., Xu, H., Zhao, Q. et al. Research of two kinds of PANI@semiconductor based photocathodic coating corrosion protection effect and mechanism. Anti-Corrosion Methods and Materials, 2024. doi:10.1108/ACMM-02-2024-2961 | |
21. | Monye, S.I., Obinna Nwankwo, S., Ikumapayi, O.M. et al. Green Hydrogen Energy: An Enabling Tool for the Economy of Power Sector in Sub-Saharan Africa. 2024. doi:10.1109/SEB4SDG60871.2024.10630416 | |
22. | Wang, T., Zhang, J., Gao, Y. et al. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance. Journal of the Chinese Society of Corrosion and Protection, 2024, 44(2): 389-395. doi:10.11902/1005.4537.2023.119 | |
23. | Nkuzinna, O.C., Onukwuili, O.D., Nwanonenyi, S.C. et al. Ionic liquid as a potent and ecological benign corrosion constraint for aluminum in an acidic medium. Moroccan Journal of Chemistry, 2024, 12(1): 157-179. doi:10.48317/IMIST.PRSM/morjchem-v12i1.43862 | |
24. | Cao, Y., Zheng, H., Tang, J. et al. Photoconversion and photoelectron storage coatings based on PANI, BiVO4 and graphene. Composites Communications, 2024. doi:10.1016/j.coco.2023.101779 | |
25. | Aslam, S., Awais, M., Ahmed, S. et al. Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. Journal of Electronic Materials, 2024, 53(1): 1-15. doi:10.1007/s11664-023-10794-z | |
26. | Zafar, H.K., Sohail, M., Nafady, A. et al. S-doped copper selenide thin films synthesized by chemical bath deposition for photoelectrochemical water splitting. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.158505 | |
27. | Liu, X., Liu, L., Zhang, Y. et al. Glutathione-sensitized SnS2 nanoflake/CdS nanorod heterojunction for enhancing cathodic protection of 304 stainless steel with remarkable photoelectric conversion performance. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157835 | |
28. | Shi, T., Liu, Y., Niu, X. et al. Novel ZnO/BiOI nanorod photoanode with interface p-n heterojunction and excellent photoelectric conversion efficiency for photocathodic protection of stainless steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. doi:10.1016/j.colsurfa.2023.132124 | |
29. | Rogolino, A., Savateev, O. Photochargeable Semiconductors: in “Dark Photocatalysis” and Beyond. Advanced Functional Materials, 2023, 33(45): 2305028. doi:10.1002/adfm.202305028 | |
30. | Yang, Z., Li, H., Zhu, J. et al. Preparation of ZIF-67/BiVO4 composite photoanode and its enhanced photocathodic protection performance of 316 SS under visible light. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.170926 | |
31. | Tian, J., Qian, F., Cao, M. et al. A Mo doping WO3/CdZnS heterojunction photoelectrode for boosting electron storage capacity. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157680 | |
32. | Cao, W., Wang, W., Yang, Z. et al. Enhancing photocathodic protection performance by controlled synthesis of Bi/BiOBr/TiO2 NTAs Z-scheme heterojunction films. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.170675 | |
33. | Chang, Y., Dai, Z., Suo, K. et al. Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior. Crystals, 2023, 13(9): 1386. doi:10.3390/cryst13091386 | |
34. | Chang, Y., Suo, K., Wang, Y. et al. In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel. Molecules, 2023, 28(18): 6554. doi:10.3390/molecules28186554 | |
35. | Jing, J., Wang, X., Chen, Z. et al. PEDOT:PSS helps to reveal the decisive role of photocurrent and photopotential on the photoinduced cathodic protection performance. Journal of Electroanalytical Chemistry, 2023. doi:10.1016/j.jelechem.2023.117607 | |
36. | Roostaei, T., Rahimpour, M.R., Zhao, H. et al. Recent advances and progress in biotemplate catalysts for electrochemical energy storage and conversion. Advances in Colloid and Interface Science, 2023. doi:10.1016/j.cis.2023.102958 | |
37. | Su, X., Kong, C., Qing, D. et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection | [Ti3C2/SrTiO3 复合材料的制备及其光电化学阴极保护性能]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. doi:10.13801/j.cnki.fhclxb.20220909.004 | |
38. | Momeni, M.M., Motalebian, M., Lee, B.-K. Photoelectrochemical performance of titania nanotubes codoped by vanadium and chromium for protection of stainless steel: A promising photoanode for continuous protection in the dark. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.169429 | |
39. | Zhang, X., Chu, Y., Xiong, X. et al. CoP-loaded BiVO4 for highly active and robust photocathodic protection of 304 stainless steel. Materials Today Communications, 2023. doi:10.1016/j.mtcomm.2023.105848 | |
40. | Chen, X., Zhou, G., Wang, X. et al. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. Chemosphere, 2023. doi:10.1016/j.chemosphere.2023.138194 | |
41. | Wang, W., Ye, Y., Li, G. et al. High-efficiency photocathodic protection performance of novel MnIn2S4/TiO2 n-n heterojunction films for Q235 carbon steel in chloride-containing simulated concrete pore solution. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.168957 | |
42. | Zhu, P., Ullah, Z., Zheng, S. et al. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy, 2023. doi:10.1016/j.nanoen.2023.108195 | |
43. | Liu, L., Li, J., Song, T. et al. Synthesis of Acrylate Dual-Tone Resists and the Effect of Their Molecular Weight on Lithography Performance and Mechanism: An Investigation. Materials, 2023, 16(6): 2331. doi:10.3390/ma16062331 | |
44. | Motalebian, M., Momeni, M.M., Ghayeb, Y. et al. Fabrication and photoelectrochemical activity of Mn/Cr co-doped titanium oxide nanostructures and their application in photocathodic protection of stainless steel. Journal of Solid State Electrochemistry, 2023, 27(2): 357-369. doi:10.1007/s10008-022-05320-w | |
45. | Motalebian, M., Momeni, M.M., Lee, B.-K. Novel photoanodes based on (Mo-Cr) co-doped titania nanotube for highly efficient photocathodic protection performance of stainless steel. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2022.155091 | |
46. | Li, H., Yang, Z., Cui, X. et al. A highly efficient In2S3/Ag2S/TiO2 NTAs photoelectrodes for photocathodic protection of Q235 carbon steel under visible light. Nanotechnology, 2023, 34(4): 045705. doi:10.1088/1361-6528/ac9da8 | |
47. | Lu, G., Sun, M., Chen, Z. et al. 3D network-like SnIn4S8/TiO2 for photoelectric electron storage and sustained cathodic protection applications in both light and dark conditions based on nanoarchitectonics. Journal of Materials Science: Materials in Electronics, 2023, 34(3): 170. doi:10.1007/s10854-022-09587-7 | |
48. | Feng, L., Zheng, S., Zhu, H. et al. Detection of corrosion inhibition by dithiane self-assembled monolayers (SAMs) on copper. Journal of the Taiwan Institute of Chemical Engineers, 2023. doi:10.1016/j.jtice.2022.104610 | |
49. | Duan, T., Ma, L., Xin, Y. et al. Morphology effects of in situ hydrothermally treated hierarchical TiO2 nanofilms on their photoelectrochemical cathodic protection performance against 304 stainless steel corrosion. Journal of Applied Electrochemistry, 2023, 53(1): 131-140. doi:10.1007/s10800-022-01751-5 | |
50. | Tian, J., Chen, Z., Ma, L. et al. Fabrication of flower-like WO3/ZnIn2S4 composite with special electronic transmission channels to improve carrier separation for photoinduced cathodic protection and electron storage. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2022.155019 | |
51. | Zhang, Q., Zhang, R., Wu, R. et al. Green and high-efficiency corrosion inhibitors for metals: a review. Journal of Adhesion Science and Technology, 2023, 37(9): 1501-1524. doi:10.1080/01694243.2022.2082746 | |
52. | Xu, S., Zhang, K., Du, L. et al. Zn3In2S6/TiO2Nanocomposites for Highly Efficient Photocathodic Protection to Carbon Steel. ACS Applied Nano Materials, 2022, 5(12): 18297-18306. doi:10.1021/acsanm.2c04149 | |
53. | Kong, L., Tang, X., Du, X. et al. Surface engineering of TiO2@SrTiO3 heterojunction with Ni2S3 for efficient visible-light-driven photoelectrochemical cathodic protection. Journal of Alloys and Compounds, 2022. doi:10.1016/j.jallcom.2022.166861 | |
54. | Xu, J., Dong, X., Kong, C. et al. Influence of Heat Treatment on the Photoelectrochemical Cathodic Protection Performance for SrTiO3 Films. Russian Journal of Physical Chemistry A, 2022, 96(12): 2774-2782. doi:10.1134/S0036024422120135 | |
55. | Wang, N., Wang, J., Ning, Y. et al. Photogenerated cathodic protection properties of Ag/NiS/TiO2 nanocomposites. Scientific Reports, 2022, 12(1): 4814. doi:10.1038/s41598-022-08929-z | |
56. | Wipataphan, P., Laohawattanajinda, J., Wichean, T.N. et al. Photocathodic protection of amorphous and nanorod zinc oxide thin-film coatings on stainless steel AISI 304 fabricated by spray pyrolysis and hydrothermal technique. Materials Chemistry and Physics, 2022. doi:10.1016/j.matchemphys.2022.126714 | |
57. | Zhang, T., Ni, A., Xu, Y. et al. N-doped TiO2 nanotube arrays with mixed phase for enhanced photocathodic protection of 304 stainless steel under visible light. Journal of Physics and Chemistry of Solids, 2022. doi:10.1016/j.jpcs.2022.110923 | |
58. | Shokri, A., Sanavi Fard, M. Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies. Chemosphere, 2022. doi:10.1016/j.chemosphere.2022.135640 | |
59. | Liu, Y., Peng, F., Yang, G.-L. et al. Coupling a titanium dioxide based heterostructure photoanode with electroless-deposited nickel-phosphorus alloy coating on magnesium alloy for enhanced corrosion protection. Journal of Materials Science and Technology, 2022. doi:10.1016/j.jmst.2022.02.049 | |
60. | Pan, G., Ding, Z.-B., Fu, N. et al. Electron transfer accelerated polymer-TiO2 coatings for enhanced photocatalytic activity in photocathodic protection. Applied Surface Science, 2022. doi:10.1016/j.apsusc.2022.153984 | |
61. | Liu, J., Wang, N., Zheng, F. et al. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection. Journal of Materials Science and Technology, 2022. doi:10.1016/j.jmst.2022.02.011 | |
62. | Deng, H., Gou, X., Chen, Q. et al. Formation of smooth anodic nanoporous iron oxide film for enhancing photocathodic protection on plain carbon steel. Surface and Coatings Technology, 2022. doi:10.1016/j.surfcoat.2022.128724 | |
63. | Helal, A., Jianqiang, Y., Eid, A.I. et al. A novel g-C3N4/In2O3/BiVO4 heterojunction photoanode for improved the photoelectrochemical cathodic protection of 304 SS stainless steel under solar light. Journal of Alloys and Compounds, 2022. doi:10.1016/j.jallcom.2022.165047 | |
64. | Li, H., Sun, L., Li, W. Application of organosilanes in titanium-containing organic–inorganic hybrid coatings. Journal of Materials Science, 2022, 57(29): 13845-13870. doi:10.1007/s10853-022-07488-y | |
65. | Wang, C., Xu, X., Zhao, P. et al. Preparation of a WO3 / carbon dots / TiO2 composite nanomaterial and its photocathodic protection | [WO3 / 碳点 / TiO2 复合纳米材料的制备及其光致阴极保护作用研究]. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(4): 73-82. doi:10.13543/j.bhxbzr.2022.04.009 | |
66. | Zhang, X., Wang, Y., Zhang, D. et al. A Comparative Study of CoNi-LDH/ZnO Film for Photocathodic Protection Applications in the Marine Environment. Frontiers in Materials, 2022. doi:10.3389/fmats.2022.904555 | |
67. | Sandua, X., Rivero, P.J., Esparza, J. et al. Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. Coatings, 2022, 12(6): 862. doi:10.3390/coatings12060862 | |
68. | Wilson, H., Van Rooij, A., Jenewein, K. et al. Photocorrosion of n- and p-Type Semiconducting Oxide-Covered Metals: Case Studies of Anodized Titanium and Copper. Physica Status Solidi (A) Applications and Materials Science, 2022, 219(11): 2100852. doi:10.1002/pssa.202100852 | |
69. | Cai, J., Kong, L., Tang, X. et al. Performance enhancement of α-Fe2O3@Bi2S3 heterojunction for photocathodic protection of 304SS. Surface and Coatings Technology, 2022. doi:10.1016/j.surfcoat.2022.128376 | |
70. | Sathasivam, K., Wang, M.-Y., Anbalagan, A.K. et al. Prolonged and Enhanced Protection Against Corrosion Over Titanium Oxide-Coated 304L Stainless Steels Having Been Irradiated With Ultraviolet. Frontiers in Materials, 2022. doi:10.3389/fmats.2022.863603 | |
71. | Ma, X., Ma, Z., Zhang, H. et al. Interfacial Schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel. Journal of Photochemistry and Photobiology A: Chemistry, 2022. doi:10.1016/j.jphotochem.2022.113772 | |
72. | Su, N., Ye, M., Li, J. et al. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance. Journal of the Chinese Society of Corrosion and Protection, 2022, 42(2): 267-273. doi:10.11902/1005.4537.2021.098 | |
73. | Zhang, Y., Bao, H., Liu, X. et al. Bi2S3 nanoparticles/ZnO nanowire heterojunction films for improved photoelectrochemical cathodic protection for 304 SS under visible light. Journal of Applied Electrochemistry, 2022, 52(3): 559-571. doi:10.1007/s10800-021-01654-x | |
74. | Lin, Y., Liu, S. Ion-Exchange Synthesis of ZnO/ZnSe/CdSe Core/Shell Heterostructured Nanowire Photoanodes toward High-Performance Photocathodic Protection of 304 Stainless Steel. European Journal of Inorganic Chemistry, 2022, 2022(4): e202100944. doi:10.1002/ejic.202100944 | |
75. | ZHANG, X.-M., CHEN, Z.-Y., LUO, H.-F. et al. Corrosion resistances of metallic materials in environments containing chloride ions: A review. Transactions of Nonferrous Metals Society of China (English Edition), 2022, 32(2): 377-410. doi:10.1016/S1003-6326(22)65802-3 | |
76. | Lin, Y., Liu, S. Synthesis of ZnO/Bi2S3 Core/Shell Nanowire Array Photoanodes for Photocathodic Protection of Stainless Steel. Coatings, 2022, 12(2): 244. doi:10.3390/coatings12020244 | |
77. | Li, W., Wei, L., Shen, T. et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2021.132511 | |
78. | Lachowicz, M.M., Winnicki, M. Corrosion Damage Mechanisms of TiO2 Cold-Sprayed Coatings. Archives of Metallurgy and Materials, 2022, 67(3): 975-985. doi:10.24425/amm.2022.139691 | |
79. | Thompson, A.A., Wood, J.L., Palombo, E.A. et al. From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion. Biofouling, 2022, 38(3): 298-320. doi:10.1080/08927014.2022.2058395 | |
80. | Wang, P., Nowotka, K., Was, G.S. Reproducing shadow corrosion on Zircaloy-2 using in-situ proton irradiation. Journal of Nuclear Materials, 2022. doi:10.1016/j.jnucmat.2021.153406 | |
81. | Chen, F.-W., Liu, B., Jian, D.-H. et al. Research progress and existing problems of photocathodic protection technology | [光生阴极保护技术的研究进展及其存在的问题]. Cailiao Gongcheng/Journal of Materials Engineering, 2021, 49(12): 83-90. doi:10.11868/j.issn.1001-4381.2021.000469 | |
82. | Li, J., Chu, Y., Zhang, C. et al. CoFe prussian blue decorated BiVO4 as novel photoanode for continuous photocathodic protection of 304 stainless steel. Journal of Alloys and Compounds, 2021. doi:10.1016/j.jallcom.2021.161279 | |
83. | Lin, Y., Liu, S. Robust ZnO nanowire photoanodes with oxygen vacancies for efficient photoelectrochemical cathodic protection. Applied Surface Science, 2021. doi:10.1016/j.apsusc.2021.150694 | |
84. | Feng, C., Chen, Z., Tian, J. et al. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance. Journal of Materials Science and Technology, 2021. doi:10.1016/j.jmst.2021.02.037 | |
85. | Chen, R., Xu, Y., Xie, X. et al. Synthesis of TiO2 nanotubes/nickel-gallium layered double hydroxide heterostructure for highly-efficient photocathodic anticorrosion of 304 stainless steel. Surface and Coatings Technology, 2021. doi:10.1016/j.surfcoat.2021.127641 | |
86. | Kaur, P., Park, Y., Sillanpää, M. et al. Synthesis of a novel SnO2/graphene-like carbon/TiO2 electrodes for the degradation of recalcitrant emergent pharmaceutical pollutants in a photo-electrocatalytic system. Journal of Cleaner Production, 2021. doi:10.1016/j.jclepro.2021.127915 | |
87. | Yang, G.-L., Ouyang, Y., Xie, Z.-H. et al. Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection. Applied Surface Science, 2021. doi:10.1016/j.apsusc.2021.149840 | |
88. | Yang, Y., Chen, Z., Feng, C. et al. The CdIn2S4/WO3 Nanosheet Composite Has a Significantly Enhanced Photo-electrochemical Cathodic Protection Performance and Excellent Electron Storage Capability. Chemistry - A European Journal, 2021, 27(45): 11589-11599. doi:10.1002/chem.202101479 | |
89. | Wang, M.-L., Lin, Y., Lu, Y.-P. et al. Constructing Bi2WO6-decorated TiO2 composite films for photocathodic protection of 304 stainless steel. Journal of Iron and Steel Research International, 2021, 28(8): 1054-1063. doi:10.1007/s42243-020-00524-8 | |
90. | Zhao, M., Yang, X., Li, X. et al. Photocathodic protection performance of Ni3S2/g-C3N4 photoanode for 304 stainless steel. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2021.115324 | |
91. | Chen, S., Li, B., Xiao, R. et al. Design an epoxy coating with tio2/go/pani nanocomposites for enhancing corrosion resistance of q235 carbon steel. Materials, 2021, 14(10): 2629. doi:10.3390/ma14102629 | |
92. | Zhang, X., Li, S., Sun, W. et al. Study on the corrosion behavior of copper coupled with TiO2 with different crystal structures. Corrosion Science, 2021. doi:10.1016/j.corsci.2021.109352 | |
93. | Abdelmoneim, A., Naji, A., Wagenaars, E. et al. Outstanding stability and photoelectrochemical catalytic performance of (Fe, Ni) co-doped Co3O4 photoelectrodes for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46(24): 12915-12935. doi:10.1016/j.ijhydene.2021.01.113 | |
94. | Momeni, M.M., Akbarnia, M. Photo-assisted electrodeposition of NiMoZn on hematite nanostructures and their photoelectrochemical application as photoanode for corrosion protection of stainless steel. Journal of Alloys and Compounds, 2021. doi:10.1016/j.jallcom.2020.158254 | |
95. | Wen, G., Bai, P., Tian, Y. A Review of Graphene-Based Materials for Marine Corrosion Protection. Journal of Bio- and Tribo-Corrosion, 2021, 7(1): 27. doi:10.1007/s40735-020-00456-6 | |
96. | Qiu, P., Xu, S., Zhang, K. et al. Influence of deposition potential on the photoelectrochemical cathodic protection behavior of n-type Cu@Cu2O films. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2021.114984 | |
97. | Jing, J., Chen, Z., Feng, C. Using the photoinduced volt-ampere curves to study the p/n types of the corrosion products with semiconducting properties. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114961 | |
98. | Liu, Y., Zhu, Z., Cheng, Y. et al. Effect of eletrodeposition temperature on the thin films of ZnO nanoparticles used for photocathodic protection of SS304. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114945 | |
99. | Wipataphan, P., Sripianem, W., Oo, N.B. et al. Photoelectrochemical cathodic protection of amorphous zinc oxide coating on hot rolled steel SS400 in a 3 wt% NaCl solution and a Na2S-NaOH solution. Journal of Metals, Materials and Minerals, 2021, 31(4): 129-142. doi:10.14456/jmmm.2021.68 | |
100. | Li, H., Song, W., Cui, X. et al. Preparation of SnIn4S8/TiO2 Nanotube Photoanode and Its Photocathodic Protection for Q235 Carbon Steel Under Visible Light. Nanoscale Research Letters, 2021, 16(1): 10. doi:10.1186/s11671-020-03447-1 | |
101. | Xiong, X., Fan, L., Zhang, X. et al. Online image monitoring and kinetics study on photocathodic protection of carbon steel using α-Fe2O3 photoanode. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114857 | |
102. | Xu, D., Liu, Y., Liu, Y. et al. A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects. Materials and Design, 2021. doi:10.1016/j.matdes.2020.109235 | |
103. | Sun, M., Liu, X., Jing, X. et al. Small organic molecule based photoelectrodes for efficient photoelectrochemical cathodic protection. ACS Applied Electronic Materials, 2020, 2(12): 4012-4022. doi:10.1021/acsaelm.0c00829 | |
104. | Fan, L., Zhang, X., Zhang, C. et al. A highly efficient α-Fe2O3/NiFe(OH)x photoelectrode for photocathodic protection of 304 stainless steel under visible light. Surface and Coatings Technology, 2020. doi:10.1016/j.surfcoat.2020.126407 | |
105. | Amin, A., El-Dissouky, A. One-step synthesis of novel Cu2ZnNiO3complex oxide nanowires with tuned band gap for photoelectrochemical water splitting. Journal of Applied Crystallography, 2020. doi:10.1107/S1600576720012200 | |
106. | Wang, C., Gao, W., Liu, N. et al. Covalent Organic Framework Decorated TiO2 Nanotube Arrays for Photoelectrochemical Cathodic Protection of Steel. Corrosion Science, 2020. doi:10.1016/j.corsci.2020.108920 | |
107. | Liu, Y., Zhu, Z., Cheng, Y. An in-depth study of photocathodic protection of SS304 steel by electrodeposited layers of ZnO nanoparticles. Surface and Coatings Technology, 2020. doi:10.1016/j.surfcoat.2020.126158 | |
108. | Li, W., Shen, T., Wang, Y. et al. Photoelectrochemical in Situ Energy Storage and the Anticorrosion Dual Function System Based on Loose Carbon Nitride Thick Film Electrodes. ACS Applied Electronic Materials, 2020, 2(7): 2180-2187. doi:10.1021/acsaelm.0c00377 | |
109. | Chatterjee, S., Shyamal, S., Chandra, D. et al. Ti(IV)-containing aluminophosphate material TAPO-25 for photoelectrochemical water oxidation. Molecular Catalysis, 2020. doi:10.1016/j.mcat.2020.110876 | |
110. | Feng, C., Chen, Z., Jing, J. et al. A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corrosion Science, 2020. doi:10.1016/j.corsci.2020.108441 | |
111. | Xiong, X., Fan, L., Xu, Y. et al. Online corrosion monitoring of photoelectrochemical cathodic protection of carbon steel using particle video microscope. Optik, 2020. doi:10.1016/j.ijleo.2019.164091 | |
112. | Xu, Y., Zhang, W., Yang, Y. et al. Photo-induced corrosion or protection: Determining the charge transfer in the semiconductor-metal heterojunction. Journal of Alloys and Compounds, 2020. doi:10.1016/j.jallcom.2019.152746 | |
113. | Yang, X., Zhou, L., Cao, G. et al. Fabrication of reduced graphene oxide wrapped TiO2/SnO2 photoanode and its anticorrosion property. Optik, 2020. doi:10.1016/j.ijleo.2019.163573 | |
114. | Durán-Álvarez, J.C., Del Angel, R., Ramírez-Ortega, D. et al. An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen. Catalysis Today, 2020. doi:10.1016/j.cattod.2018.09.018 | |
115. | Saji, V.S.. Review - Photoelectrochemical Cathodic Protection in the Dark: A Review of Nanocomposite and Energy-Storing Photoanodes. Journal of the Electrochemical Society, 2020, 167(12): 121505. doi:10.1149/1945-7111/abad70 | |
116. | Nguyen, T.A., Rajendran, S., Kakooei, S. et al. Nanomaterials for cathodic protection of metals. Corrosion Protection at the Nanoscale, 2020. doi:10.1016/B978-0-12-819359-4.00002-7 | |
117. | Saji, V.S.. Advanced corrosion prevention approaches: Smart coating and photoelectrochemical cathodic protection. Corrosion and Fouling Control in Desalination Industry, 2020. doi:10.1007/978-3-030-34284-5_11 | |
118. | Ngaotrakanwiwat, P., Heawphet, P., Rangsunvigit, P. Enhancement of photoelectrochemical cathodic protection of copper in marine condition by cu-doped TiO2. Catalysts, 2020, 10(2): 146. doi:10.3390/catal10020146 | |
119. | Razavizadeh, O., Bahadormanesh, B., Ghorbani, M. et al. Effect of Photoelectrochemical Activity of ZnO-Graphene Thin Film on the Corrosion of Carbon Steel and 304 Stainless Steel. Journal of Materials Engineering and Performance, 2020, 29(1): 497-505. doi:10.1007/s11665-020-04579-2 | |
120. | Fiaz, M., Athar, M., Rani, S. et al. One pot solvothermal synthesis of Co3O4@UiO-66 and CuO@UiO-66 for improved current density towards hydrogen evolution reaction. Materials Chemistry and Physics, 2020. doi:10.1016/j.matchemphys.2019.122320 | |
121. | Wei, K.-N., Liu, Z., Zuo, S.-X. et al. Preparation of CeO2/Flake-like CdS Composites as High-performance Photoanodes for Photoelectrochemical Cathodic Protection | [高性能CeO2/片状CdS复合光电极材料的制备及在光阴极保护中应用]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34(12): 1334-1340. doi:10.15541/jim20190057 | |
122. | Miao, B., Iqbal, A., Bevan, K.H. Utilizing Band Diagrams to Interpret the Photovoltage and Photocurrent in Photoanodes: A Semiclassical Device Modeling Study. Journal of Physical Chemistry C, 2019, 123(47): 28593-28603. doi:10.1021/acs.jpcc.9b07536 | |
123. | Li, W., Wang, L., Zhang, Q. et al. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2019.151681 | |
124. | Momeni, M.M., Khansari-Zadeh, S.H., Farrokhpour, H. Fabrication of tungsten-iron-doped TiO2 nanotubes via anodization: new photoelectrodes for photoelectrochemical cathodic protection under visible light. SN Applied Sciences, 2019, 1(10): 1160. doi:10.1007/s42452-019-1157-1 | |
125. | Basheer, A.A., Ali, I. Water photo splitting for green hydrogen energy by green nanoparticles. International Journal of Hydrogen Energy, 2019, 44(23): 11564-11573. doi:10.1016/j.ijhydene.2019.03.040 | |
126. | Jing, J., Chen, Z., Bu, Y. et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO 3 by Cr 6+ reduction and oxygen vacancy modification. Electrochimica Acta, 2019. doi:10.1016/j.electacta.2019.03.020 | |
127. | Hosseini, M.G., Aboutalebi, K. Epoxy coating with self-healing capability based on a 2-mercaptobenzothiazole-loaded CeO2 nanocontainer. Journal of Applied Polymer Science, 2019, 136(15): 47297. doi:10.1002/app.47297 | |
128. | Zuo, S., Liu, Z., Liu, W. et al. TiO2 nanorod arrays on the conductive mica combine photoelectrochemical cathodic protection with barrier properties. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2018.10.313 | |
129. | Arunachalam, M., Ahn, K.-S., Kang, S.H. Oxygen evolution NiOOH catalyst assisted V2O5@BiVO4 inverse opal hetero-structure for solar water oxidation. International Journal of Hydrogen Energy, 2019, 44(10): 4656-4663. doi:10.1016/j.ijhydene.2019.01.024 | |
130. | Xie, T., Zheng, T., Wang, R. et al. A promising CuOx/WO3 p-n heterojunction thin-film photocathode fabricated by magnetron reactive sputtering. International Journal of Hydrogen Energy, 2019, 44(8): 4062-4071. doi:10.1016/j.ijhydene.2018.12.153 | |
131. | Sun, K., Yan, S., Yu, T. et al. Highly enhanced photoelectrochemical cathodic protection performance of the preparation of magnesium oxides modified TiO 2 nanotube arrays. Journal of Electroanalytical Chemistry, 2019. doi:10.1016/j.jelechem.2019.01.005 | |
132. | Qian, B., Dai, H., Tang, S. et al. Enhanced photocathodic protection performance of graphene quantum dots sensitized TiO2 nanotube arrays for 304 stainless steel. Optik, 2019. doi:10.1016/j.ijleo.2018.10.027 | |
133. | Wang, X., Lei, J., Shao, Q. et al. Preparation of ZnWO4/TiO2 composite film and its photocathodic protection for 304 stainless steel under visible light. Nanotechnology, 2019, 30(4): 045710. doi:10.1088/1361-6528/aaef9c | |
134. | Escobar-Alarcón, L., Iturbe-García, J.L., González-Zavala, F. et al. Hydrogen production by laser irradiation of metals in water under an ultrasonic field: A novel approach. International Journal of Hydrogen Energy, 2019, 44(3): 1579-1585. doi:10.1016/j.ijhydene.2018.11.158 | |
135. | Montenegro-Ayo, R., Morales-Gomero, J.C., Alarcon, H. et al. Scaling up photoelectrocatalytic reactors: A TiO2 nanotube-coated disc compound reactor effectively degrades acetaminophen. Water (Switzerland), 2019, 11(12): 2522. doi:10.3390/w11122522 | |
136. | Zhu, Y., Liu, Y., Yang, Z. Highly efficient photo-induced cathodic protection of 403SS by the all-solid-state Z-scheme ZnS-CdS-Ag@TiO2 nanoheterojunctions. International Journal of Electrochemical Science, 2019, 14(1): 815-825. doi:10.20964/2019.01.74 | |
137. | Hejazi, S., Mohajernia, S., Wu, Y. et al. Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. Electrochemistry Communications, 2019. doi:10.1016/j.elecom.2018.11.020 | |
138. | Kusmaya, R.A., Sahroni, T.R. Technical-economic feasibility of solar cathodic protection. IOP Conference Series: Earth and Environmental Science, 2018, 195(1): 012045. doi:10.1088/1755-1315/195/1/012045 | |
139. | Liu, X., Chen, Z., Hou, J. et al. Effect of visible light illumination on the atmospheric corrosion behaviors of pure copper pre-deposited with NaCl particles. International Journal of Electrochemical Science, 2018, 13(12): 12238-12255. doi:10.20964/2018.12.03 | |
140. | Li, Y., Wang, J., Li, S. et al. Solar energy protects steels against corrosion: Enhanced protection capability achieved by NiFeOx decorated BiVO4 photoanode. Materials Research Bulletin, 2018. doi:10.1016/j.materresbull.2018.08.015 | |
141. | Zhang, J., Ur Rahman, Z., Zheng, Y. et al. Nanoflower like SnO 2 -TiO 2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel. Applied Surface Science, 2018. doi:10.1016/j.apsusc.2018.06.307 | |
142. | Xie, T., Zheng, T., Wang, R. et al. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy and Environment, 2018, 3(3): 239-246. doi:10.1016/j.gee.2018.01.003 | |
143. | Matloub, F.K., Sulaiman, M.M., Shareef, Z.N. Investigating the effect of PH and salt concentration on cathodic protection of pipe-lines. International Journal of Mechanical Engineering and Technology, 2018, 9(5): 474-480. ![]() | |
144. | Kuang, S., Zheng, W., Gu, Y. et al. Dual-functional ZnxMg1-xO solid solution nanolayer modified ZnO tussock-like nanorods with improved photoelectrochemical anti-corrosion performance. Journal of Electroanalytical Chemistry, 2018. doi:10.1016/j.jelechem.2018.03.022 | |
145. | Joy, J., Mathew, J., George, S.C. Nanomaterials for photoelectrochemical water splitting – review. International Journal of Hydrogen Energy, 2018, 43(10): 4804-4817. doi:10.1016/j.ijhydene.2018.01.099 | |
146. | Sripianem, W., Techapiesancharoenkij, R. Effect of Al and Ga codoping on the morphological, electronic, and optical properties of ZnO transparent conductive thin films prepared by spray pyrolysis technique. Turkish Journal of Physics, 2018, 42(6): 688-698. doi:10.3906/fiz-1807-17 |