Yuyu Bu, Jin-Ping Ao. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy&Environment, 2017, 2(4): 331-362. doi: 10.1016/j.gee.2017.02.003
Citation: Yuyu Bu, Jin-Ping Ao. A review on photoelectrochemical cathodic protection semiconductor thin films for metals. Green Energy&Environment, 2017, 2(4): 331-362. doi: 10.1016/j.gee.2017.02.003

A review on photoelectrochemical cathodic protection semiconductor thin films for metals

doi: 10.1016/j.gee.2017.02.003
  • Photoelectrochemical (PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.

     

  • [1]
    B.A.Shaw, R.G.Kelly Electrochem. Soc. Interface (2006),pp. 24-26
    [2]
    J.Ma, J.Wen J. Alloys Compd., 496 (2010),pp. 110-115
    [3]
    C.Christodoulou, G.Glass, J.Webb, et al. Corros. Sci., 52 (2010),pp. 2671-2679
    [4]
    M.B.González, S.B.Saidman Corros. Sci., 53 (2011),pp. 276-282
    [5]
    Y.Ohko, S.Saitoh, T.Tatsuma, et al. J. Electrochem. Soc., 148 (2001),pp. B24-B28
    [6]
    H.W.Park, K.Y.Kim, W.Y.Choi J. Phys. Chem. B, 106 (2002),pp. 4775-4781
    [7]
    R.Liu, Z.Zheng, J.Spurgeon, et al. Energy Environ. Sci., 7 (2014),pp. 2504-2517
    [8]
    Z.Zhang, J.T.YatesJr. Chem. Rev., 112 (2012),pp. 5520-5551
    [9]
    L.Song, X.Ma, Z.Chen, et al. Corros. Sci., 87 (2014),pp. 427-437
    [10]
    L.Song, Z.Chen Corros. Sci., 86 (2014),pp. 318-325
    [11]
    L.Song, Z.Chen J. Electrochem. Soc., 162 (2015),pp. C79-C84
    [12]
    M.Sun, Z.Chen, Y.Bu, et al. Corros. Sci., 82 (2014),pp. 77-84
    [13]
    A.Fujishima, K.Honda Nature, 238 (1972),pp. 37-38
    [14]
    B.O'regan, M.Gratzel Nature, 353 (1991),pp. 737-740
    [15]
    S.Rani, S.C.Roy, M.Paulose, et al. Phys. Chem. Chem. Phys., 12 (2010),pp. 2780-2800
    [16]
    M.Paulose, O.K.Varghese, G.K.Mor, et al. Nanotechnology, 17 (2005),pp. 398-402
    [17]
    J.Yuan, S.Tsujikawa J. Electrochem. Soc., 142 (1995),pp. 3444-3450
    [18]
    C.X.Lei, H.Zhou, Z.D.Feng, et al. Appl. Surf. Sci., 257 (2011),pp. 7330-7334
    [19]
    C.X.Lei, H.Zhou, Z.D.Feng J. Alloys. Compd., 542 (2012),pp. 164-169
    [20]
    J.Li, C.J.Lin, C.G.Lin J. Electrochem. Soc., 158 (2011),pp. C55-C62
    [21]
    H.Yun, C.J.Lin, J.Li, et al. Appl. Surf. Sci., 255 (2008),pp. 2113-2117
    [22]
    M.C.Li, S.Z.Luo, P.F.Wu, et al. Electrochim. Acta, 50 (2005),pp. 3401-3406
    [23]
    C.X.Lei, H.Zhou, C.Wang, et al. Electrochim. Acta, 87 (2013),pp. 245-249
    [24]
    Y.F.Zhu, R.G.Du, W.Chen, et al. Electrochem. Commun., 12 (2010),pp. 1626-1629
    [25]
    G.X.Shen, Y.C.Chen, C.J.Lin Thin Solid Films, 489 (2005),pp. 130-136
    [26]
    M.M.Sun, Z.Y.Chen, J.Q.Yu Electrochim. Acta, 109 (2013),pp. 13-19
    [27]
    S.N.Li, J.J.Fu Corros. Sci., 68 (2013),pp. 101-110
    [28]
    S.N.Li, Q.Wang, T.Chen, et al. Nanoscale Res. Lett., 7 (2012),pp. 1-10
    [29]
    Y.Liu, C.Xu, Z.D.Feng Appl. Surf. Sci., 314 (2014),pp. 392-399
    [30]
    J.Li, H.Yun, C.J.Lin J. Electrochem. Soc., 154 (2007),pp. C631-C636
    [31]
    J.Li, C.J.Lin, Y.K.Lai, et al. Surf. Coat. Technol., 205 (2010),pp. 557-564
    [32]
    C.X.Lei, Z.D.Feng, H.Zhou Electrochim. Acta, 68 (2012),pp. 134-140
    [33]
    J.Li, C.J.Lin, J.T.Li, et al. Thin Solid Films, 519 (2011),pp. 5494-5502
    [34]
    Z.Q.Lin, Y.K.Lai, R.G.Hu, et al. Electrochim. Acta, 55 (2010),pp. 8717-8723
    [35]
    H.Li, X.T.Wang, Y.Liu, et al. Corros. Sci., 82 (2014),pp. 145-153
    [36]
    R.H.Baughman, A.A.Zakhidov, W.A.de Heer Science, 297 (2002),pp. 787-792
    [37]
    G.Jiang, Z.Lin, L.Zhu, et al. Carbon, 48 (2010),pp. 3369-3375
    [38]
    W.Liu, Y.G.Wang, G.Su, et al. Carbon, 50 (2012),pp. 3641-3648
    [39]
    X.Q.Guo, W.Liu, L.X.Cao, et al. Appl. Surf. Sci., 283 (2013),pp. 498-504
    [40]
    C.X.Lei, Y.Liu, H.Zhou, et al. Corros. Sci., 68 (2013),pp. 214-222
    [41]
    J.G.Mavroides, J.A.Kafalas, D.F.Kolesar Appl. Phys. Lett., 28 (1976),pp. 241-243
    [42]
    M.S.Wrighton, P.T.Wolczanski, A.B.Ellis J. Solid State Chem., 22 (1977),pp. 17-29
    [43]
    S.Ahuja, T.R.N.Kutty J. Photochem. Photobiol. A, 97 (1996),pp. 99-107
    [44]
    M.Matsumura, M.Hiramoto, H.Tsubomura J. Electrochem. Soc., 130 (1983),pp. 326-330
    [45]
    V.Subramanian, R.K.Roeder, E.E.Wolf Ind. Eng. Chem. Res., 45 (2006),pp. 2187-2193
    [46]
    Y.Liu, L.Xie, Y.Li, et al. J. Power Sources, 183 (2008),pp. 701-707
    [47]
    H.R.Zhang, G.S.Miao, X.P.Ma, et al. Int. J. Photoenergy, 2013 (2013),pp. 1-6
    [48]
    J.Poth, R.Haberkorn, H.P.Beck J. Eur. Ceram. Soc., 20 (2000),pp. 707-713
    [49]
    U.K.N.Din, T.H.T.Aziz, M.M.Salleh, et al. Int. J. Miner., Metall. Mater., 23 (2016),pp. 109-115
    [50]
    Y.Y.Bu, W.B.Li, J.Q.Yu, et al. Acta Phys. Chim. Sin., 27 (2011),pp. 2393-2399
    [51]
    W.Fan, L.Niinistö Mater. Res. Bull., 29 (1994),pp. 451-458
    [52]
    Z.B.Jiao, T.Chen, J.Y.Xiong, et al. Sci. Rep., 3 (2013),pp. 1-6
    [53]
    Y.Ohko, S.Saitoh, T.Tatsuma, et al. Electrochem. Solid-State Lett., 5 (2002),pp. B9-B12
    [54]
    H.Kato, A.Kudo J. Phys. Chem. B, 106 (2002),pp. 5029-5034
    [55]
    J.W.Liu, G.Chen, Z.H.Li, et al. J. Solid State Chem., 179 (2006),pp. 3704-3708
    [56]
    S.Tonda, S.Kumar, O.Anjaneyulu, et al. Phys. Chem. Chem. Phys., 16 (2014),pp. 23819-23828
    [57]
    D.F.Wang, J.H.Ye, T.Kako, et al. J. Phys. Chem. B, 110 (2006),pp. 15824-15830
    [58]
    S.X.Ouyang, H.Tong, N.Umezawa, et al. J. Am. Chem. Soc., 134 (2012),pp. 1974-1977
    [59]
    R.B.Comes, P.V.Sushko, S.M.Heald, et al. Chem. Mater., 26 (2014),pp. 7073-7082
    [60]
    Q.Wang, T.Hisatomi, S.S.K.Ma, et al. Chem. Mater., 26 (2014),pp. 4144-4150
    [61]
    K.Iwashina, A.Kudo J. Am. Chem. Soc., 133 (2011),pp. 13272-13275
    [62]
    T.H.Xie, X.Y.Sun, J.Lin J. Phys. Chem. C, 112 (2008),pp. 9753-9759
    [63]
    J.S.Wang, S.Yin, M.Komatsu, et al. J. Photochem. Photobiol. A, 165 (2004),pp. 149-156
    [64]
    H.Yu, S.C.Yan, Z.S.Li, et al. Int. J. Hydrogen Energy, 37 (2012),pp. 12120-12127
    [65]
    T.P.Cao, Y.J.Li, C.H.Wang, et al. Langmuir, 27 (2011),pp. 2946-2952
    [66]
    S.Choudhary, A.Solanki, S.Upadhyay, et al. J. Solid State Electrochem., 17 (2013),pp. 2531-2538
    [67]
    D.Sharma, A.Verma, V.R.Satsangi, et al. Int. J. Hydrogen Energy, 39 (2014),pp. 4189-4197
    [68]
    T.Tatsuma, S.Saitoh, Y.Ohko, et al. Chem. Mater., 13 (2001),pp. 2838-2842
    [69]
    R.Subasri, T.Shinohara Electrochem. Commun., 5 (2003),pp. 897-902
    [70]
    R.Subasri, S.Deshpande, S.Seal, et al. Electrochem. Solid-State Lett., 9 (2006),pp. B1-B4
    [71]
    M.Miyauchi, A.Nakajima, T.Watanabe, et al. Chem. Mater., 14 (2002),pp. 2812-2816
    [72]
    J.Luo, P.A.Maggard Adv. Mater., 18 (2006),pp. 514-517
    [73]
    S.Burnside, J.E.Moser, K.Brooks, et al. J. Phys. Chem. B, 103 (1999),pp. 9328-9332
    [74]
    Y.Zhang, Y.Y.Bu, J.Q.Yu, et al. J. Nanopart. Res., 15 (2013),pp. 1-8
    [75]
    Y.F.Zhu, L.Xu, J.Hu, et al. Electrochim. Acta, 121 (2014),pp. 361-368
    [76]
    Q.P.Luo, X.Y.Yu, B.X.Lei, et al. J. Phys. Chem. C, 116 (2012),pp. 8111-8117
    [77]
    Z.B.Yu, Y.P.Xie, G.Liu, et al. J. Mater. Chem. A, 1 (2013),pp. 2773-2776
    [78]
    C.Yu, K.Yang, Y.Xie, et al. Nanoscale, 5 (2013),pp. 2142-2151
    [79]
    J.X.Sun, Y.P.Yuan, L.G.Qiu, et al. Dalton Trans., 41 (2012),pp. 6756-6763
    [80]
    W.W.He, H.K.Kim, W.G.Wamer, et al. J. Am. Chem. Soc., 136 (2013),pp. 750-757
    [81]
    M.M.Sun, Z.Y.Chen, Y.Y.Bu, et al. Corros. Sci., 82 (2014),pp. 77-84
    [82]
    J.P.Jing, Z.Y.Chen, Y.Y.Bu Int. J. Electrochem. Sci., 10 (2015),pp. 8783-8796
    [83]
    H.M.Xu, W.Liu, L.X.Cao, et al. Appl. Surf. Sci., 301 (2014),pp. 508-514
    [84]
    X.C.Wang, K.Maeda, A.Thomas, et al. Nat. Mater., 8 (2009),pp. 76-80
    [85]
    S.C.Yan, Z.S.Li, Z.G.Zou Langmuir, 25 (2009),pp. 10397-10401
    [86]
    Z.J.Huang, F.B.Li, B.F.Chen, et al. Appl. Catal. B, 136 (2013),pp. 269-277
    [87]
    G.D.Ding, W.T.Wang, T.Jiang, et al. ChemCatChem, 5 (2013),pp. 192-200
    [88]
    J.S.Zhang, X.F.Chen, K.Takanabe, et al. Angew. Chem. Int. Ed., 49 (2010),pp. 441-444
    [89]
    Y.Y.Bu, Z.Y.Chen, J.Q.Yu, et al. Electrochim. Acta, 88 (2013),pp. 294-300
    [90]
    Y.Y.Bu, Z.Y.Chen RSC Adv., 4 (2014),pp. 45397-45406
    [91]
    M.M.Sun, Z.Y.Chen, Y.Y.Bu J. Alloys Compd., 618 (2015),pp. 734-741
    [92]
    Y.Y.Bu, Z.Y.Chen Electrochim. Acta, 144 (2014),pp. 42-49
    [93]
    T.Tatsuma, S.Saitoh, P.Ngaotrakanwiwat, et al. Langmuir, 18 (2002),pp. 7777-7779
    [94]
    H.Park, A.Bak, T.H.Jeon, et al. Appl. Catal. B, 115 (2012),pp. 74-80
    [95]
    P.Ngaotrakanwiwat, S.Saitoh, Y.Ohko, et al. J. Electrochem. Soc., 150 (2003),pp. A1405-A1407
    [96]
    P.Ngaotrakanwiwat, T.Tatsuma J. Electroanal. Chem., 573 (2004),pp. 263-269
    [97]
    R.Subasri, T.Shinohara, K.Mori Sci. Technol. Adv. Mater., 6 (2005),pp. 501-507
    [98]
    Z.Xia, X.Zhou, J.Li, et al. Sci. Bull., 60 (2015),pp. 1395-1402
    [99]
    N.Lu, Y.Su, J.Li, et al. Sci. Bull., 60 (2015),pp. 1281-1286
    [100]
    C.Meng, Z.Liu, T.Zhang, et al. Green Chem., 17 (2015),pp. 2764-2768
    [101]
    Z.Liu, Z.Hu, H.Huang, et al. J. Mater. Chem., 22 (2012),pp. 22120-22125
  • Relative Articles

    [1]Junzhu Yang, Chi-Kit Sou, Yuan Lu. Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion.  Green Energy&Environment, 2024, 9(9): 1366-1383. doi: 10.1016/j.gee.2023.10.002
    [2]Yang Liu, Yu Zhang, Zhao-Di Yang, Liqiang Jing. Recent advances in phenazine-linked porous catalysts toward photo/electrocatalytic applications and mechanism.  Green Energy&Environment, 2024, 9(10): 1518-1549. doi: 10.1016/j.gee.2023.12.006
    [3]Jinhao Li, Jing Ren, Shaoquan Li, Guangchao Li, Molly Meng-Jung Li, Rengui Li, Young Soo Kang, Xiaoxin Zou, Yong Luo, Bin Liu, Yufei Zhao. Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges.  Green Energy&Environment, 2024, 9(5): 859-876. doi: 10.1016/j.gee.2023.05.003
    [4]Jiacheng Bao, Xin Sun, Ping Ning, Kai Li, Jie Yang, Fei Wang, Lei Shi, Maohong Fan. Industrial solid wastes to environmental protection materials for removal of gaseous pollutants: A review.  Green Energy&Environment. doi: 10.1016/j.gee.2024.01.006
    [5]Yanqin Li, Junqi Tian, Zhisong Liu, Zhongqi Liu, Dong Dong, Fu Wang, Wei Wang, Minmin Liu, Jianming Dan, Yongsheng Li, Feng Yu, Bin Dai, Yunbo Yu. Robust photo-assisted removal of NO at room temperature: Experimental and density functional theory calculation with optical carrier.  Green Energy&Environment, 2023, 8(4): 1102-1116. doi: 10.1016/j.gee.2022.01.004
    [6]Bolin Wang, Chunxiao Jin, Shujuan Shao, Yuxue Yue, Yuteng Zhang, Saisai Wang, Renqin Chang, Haifeng Zhang, Jia Zhao, Xiaonian Li. Electron-deficient Cu site catalyzed acetylene hydrochlorination.  Green Energy&Environment, 2023, 8(4): 1128-1140. doi: 10.1016/j.gee.2022.01.005
    [7]Kejia Wu, Minglong Cao, Qiang Zeng, Xuehui Li. Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization.  Green Energy&Environment, 2023, 8(2): 383-405. doi: 10.1016/j.gee.2022.02.011
    [8]Fang Li, Qian Zhang, Jing Liu, Nan Cui, Guoqing Guan, Wei Huang. Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas.  Green Energy&Environment, 2022, 7(6): 1390-1400. doi: 10.1016/j.gee.2022.01.015
    [9]Zexu Chi, Jingyun Zhao, Yi Zhang, Han Yu, Hongbing Yu. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation: A review.  Green Energy&Environment, 2022, 7(3): 372-393. doi: 10.1016/j.gee.2021.05.002
    [10]Sheng Chu, Pengfei Ou, Roksana Tonny Rashid, Yuyang Pan, Daolun Liang, Huiyan Zhang, Jun Song, Zetian Mi. Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering.  Green Energy&Environment, 2022, 7(3): 545-553. doi: 10.1016/j.gee.2020.11.015
    [11]Harin Yoo, Doohwan Lee, Jung Hyeun Kim. High performance of TiO2/CuxO photoelectrodes for regenerative solar energy storage in a vanadium photoelectrochemical cell.  Green Energy&Environment, 2022, 7(4): 704-711. doi: 10.1016/j.gee.2020.11.012
    [12]Yaping Zhang, Yuyu Bu, Lin Wang, Jin-Ping Ao. Regulation of the photogenerated carrier transfer process during photoelectrochemical water splitting: A review.  Green Energy&Environment, 2021, 6(4): 479-495. doi: 10.1016/j.gee.2020.11.007
    [13]Zhijia Du, Christopher J. Janke, Jianlin Li, David L. Wood. High–Speed electron beam curing of thick electrode for high energy density Li-ion batteries.  Green Energy&Environment, 2019, 4(4): 375-381. doi: 10.1016/j.gee.2019.04.001
    [14]Xiaohong Wu, Kecheng Pan, Mengmin Jia, Yufei Ren, Hongyan He, Lan Zhang, Suojiang Zhang. Electrolyte for lithium protection: From liquid to solid.  Green Energy&Environment, 2019, 4(4): 360-374. doi: 10.1016/j.gee.2019.05.003
    [15]Tian Xie, Tao Zheng, Ruiling Wang, Yuyu Bu, Jin-Ping Ao. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction.  Green Energy&Environment, 2018, 3(3): 239-246. doi: 10.1016/j.gee.2018.01.003
    [16]Xuan Wu, Jie Xu, George Y. Chen, Rong Fan, Xiaokong Liu, Haolan Xu. Harvesting, sensing and regulating light based on photo-thermal effect of Cu@CuO mesh.  Green Energy&Environment, 2017, 2(4): 387-392. doi: 10.1016/j.gee.2017.02.002
    [17]Hu Zhao, Bao Qiu, Haocheng Guo, Kai Jia, Zhaoping Liu, Yonggao Xia. Characterization of Li-rich layered oxides by using transmission electron microscope.  Green Energy&Environment, 2017, 2(3): 174-185. doi: 10.1016/j.gee.2017.05.005
    [18]Ee Teng Kho, Tze Hao Tan, Emma Lovell, Roong Jien Wong, Jason Scott, Rose Amal. A review on photo-thermal catalytic conversion of carbon dioxide.  Green Energy&Environment, 2017, 2(3): 204-217. doi: 10.1016/j.gee.2017.06.003
    [19]Dong Su. Advanced electron microscopy characterization of nanomaterials for catalysis.  Green Energy&Environment, 2017, 2(2): 70-83. doi: 10.1016/j.gee.2017.02.001
    [20]Jiajie Cen, Qiyuan Wu, Mingzhao Liu, Alexander Orlov. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress.  Green Energy&Environment, 2017, 2(2): 100-111. doi: 10.1016/j.gee.2017.03.001
  • Cited by

    Periodical cited type(146)

    1. Zhang, S., Li, W., Li, G. et al. High performance DC-TENG based on coupling of mismatched number of triboelectric units and electrodes with mechanical switches for metal surface anti-corrosion. Nano Energy, 2024. doi:10.1016/j.nanoen.2024.110093
    2. Ebrahimi, M., Bahrami, A., Atapour, M. et al. Chemical bath co-deposition of Co3O4 and In2O3 on TiO2 nanotubes, aiming for photoanodes with improved photoelectrochemical properties. Journal of Alloys and Compounds, 2024. doi:10.1016/j.jallcom.2024.175359
    3. Xie, H., Wang, Z., Nie, G. et al. Integration of functional modules in a unified photoelectrochemical device for highly efficient solar-driven cathodic metal protection. Applied Catalysis B: Environmental, 2024. doi:10.1016/j.apcatb.2024.124164
    4. Rabizadeh, T.. Evaluating the performance of corn peptone in preventing the corrosion of mild steel immersed in HCl. Materials and Corrosion, 2024, 75(9): 1142-1154. doi:10.1002/maco.202414346
    5. Maka, A.O.M., Chaudhary, T.N., Alaswad, G. et al. Applications of solar photovoltaics in powering cathodic protection systems: a review. Clean Technologies and Environmental Policy, 2024, 26(9): 2755-2776. doi:10.1007/s10098-024-02750-0
    6. Aspalter, A., Braidt, R., Duchoslav, J. et al. Photo-induced processes on ZnO and its possible impact on cathodic delamination of organic coatings on galvanised steel. Electrochimica Acta, 2024. doi:10.1016/j.electacta.2024.144453
    7. Qian, F., Tian, J., Guo, C. et al. Dual-function photoelectrode of TiO2 nanotube array/CdZnS/ZnS heterojunction for efficient photoelectrochemical cathodic protection and anti-biofouling. Journal of Materials Science and Technology, 2024. doi:10.1016/j.jmst.2023.10.064
    8. Zhang, Y., Liu, X., Zhang, X. et al. Indium sulfide-sensitized 2D stannum indium sulfide nanosheet arrays promoting photoelectrochemical conversion efficiency in cathodic protection. Materials Today Energy, 2024. doi:10.1016/j.mtener.2024.101563
    9. Yao, H., Zhang, R., Wen, Y. et al. Metal-organic framework [NH2-MIL-53(Al)] functionalized TiO2 nanotube photoanodes for highly stable and efficient photoelectrochemical cathodic protection of nickel-coated Mg alloy. Journal of Materials Science and Technology, 2024. doi:10.1016/j.jmst.2023.09.038
    10. Collins, D.K., Schichtl, Z.G., Nesbitt, N.T. et al. Utilizing three-terminal, interdigitated back contact Si solar cells as a platform to study the durability of photoelectrodes for solar fuel production. Energy and Environmental Science, 2024, 17(10): 3329-3337. doi:10.1039/d4ee00349g
    11. Yingna Zhao, Su, X., Qing, D., Wang, J. et al. WO3/SrTiO3 Heterojunction Composite: A Promising Photoanode for Photochemical Cathodic Protection. Russian Journal of Physical Chemistry A, 2024, 98(4): 795-804. doi:10.1134/S0036024424040319
    12. Wang, J., Kong, C., Zeng, X. et al. Preparation and Photoelectrochemical Cathodic Protection Properties of F-Doped SrTiO3 | [F 掺杂 SrTiO3 的制备及光电化学阴极保护性能研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2024, 53(4): 707-713.
    13. Ye, M., Yu, J., Wang, T. et al. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel. Journal of the Chinese Society of Corrosion and Protection, 2024, 44(2): 372-380. doi:10.11902/1005.4537.2023.114
    14. Zhu, J., Zhang, X., Yang, Z. et al. Enhancing photocathodic protection of Q235 carbon steel by co-sensitizing TiO2 nanotubes with CdIn2S4 nanogranules and WO3 nanoplates. Journal of Alloys and Compounds, 2024. doi:10.1016/j.jallcom.2023.173184
    15. Ebrahimi, M., Atapour, M., Bahrami, A. et al. Enhanced photoelectrochemical cathodic protection of stainless steel under visible light using Co3O4–ZnO-modified TiO2 nanotubes. Applied Physics A: Materials Science and Processing, 2024, 130(3): 176. doi:10.1007/s00339-024-07338-5
    16. Cai, J., Li, Y., Cai, Z. et al. Epitaxial heterostructure of CdIn2S4/WO3 with the tunable built-in field for efficient photocathodic protection of 304SS and Q235. Surfaces and Interfaces, 2024. doi:10.1016/j.surfin.2023.103791
    17. Pan, C., He, J., Zhu, J. et al. Corrosion Control by Carbon-Based Nanomaterials: A Review. ACS Applied Nano Materials, 2024, 7(3): 2515-2528. doi:10.1021/acsanm.3c05547
    18. El ouardi, M., Idrissi, A.E., Ahsaine, H.A. et al. Current advances on nanostructured oxide photoelectrocatalysts for water splitting: A comprehensive review. Surfaces and Interfaces, 2024. doi:10.1016/j.surfin.2024.103850
    19. Dai, Y., Liu, N., Wang, C. et al. NiCo-layered double hydroxide modified TiO2 nanotube arrays and its application in photoelectrochemical cathodic protection of 304 stainless steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024. doi:10.1016/j.colsurfa.2023.132633
    20. Jin, X., Xu, H., Zhao, Q. et al. Research of two kinds of PANI@semiconductor based photocathodic coating corrosion protection effect and mechanism. Anti-Corrosion Methods and Materials, 2024. doi:10.1108/ACMM-02-2024-2961
    21. Monye, S.I., Obinna Nwankwo, S., Ikumapayi, O.M. et al. Green Hydrogen Energy: An Enabling Tool for the Economy of Power Sector in Sub-Saharan Africa. 2024. doi:10.1109/SEB4SDG60871.2024.10630416
    22. Wang, T., Zhang, J., Gao, Y. et al. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance. Journal of the Chinese Society of Corrosion and Protection, 2024, 44(2): 389-395. doi:10.11902/1005.4537.2023.119
    23. Nkuzinna, O.C., Onukwuili, O.D., Nwanonenyi, S.C. et al. Ionic liquid as a potent and ecological benign corrosion constraint for aluminum in an acidic medium. Moroccan Journal of Chemistry, 2024, 12(1): 157-179. doi:10.48317/IMIST.PRSM/morjchem-v12i1.43862
    24. Cao, Y., Zheng, H., Tang, J. et al. Photoconversion and photoelectron storage coatings based on PANI, BiVO4 and graphene. Composites Communications, 2024. doi:10.1016/j.coco.2023.101779
    25. Aslam, S., Awais, M., Ahmed, S. et al. Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. Journal of Electronic Materials, 2024, 53(1): 1-15. doi:10.1007/s11664-023-10794-z
    26. Zafar, H.K., Sohail, M., Nafady, A. et al. S-doped copper selenide thin films synthesized by chemical bath deposition for photoelectrochemical water splitting. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.158505
    27. Liu, X., Liu, L., Zhang, Y. et al. Glutathione-sensitized SnS2 nanoflake/CdS nanorod heterojunction for enhancing cathodic protection of 304 stainless steel with remarkable photoelectric conversion performance. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157835
    28. Shi, T., Liu, Y., Niu, X. et al. Novel ZnO/BiOI nanorod photoanode with interface p-n heterojunction and excellent photoelectric conversion efficiency for photocathodic protection of stainless steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. doi:10.1016/j.colsurfa.2023.132124
    29. Rogolino, A., Savateev, O. Photochargeable Semiconductors: in “Dark Photocatalysis” and Beyond. Advanced Functional Materials, 2023, 33(45): 2305028. doi:10.1002/adfm.202305028
    30. Yang, Z., Li, H., Zhu, J. et al. Preparation of ZIF-67/BiVO4 composite photoanode and its enhanced photocathodic protection performance of 316 SS under visible light. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.170926
    31. Tian, J., Qian, F., Cao, M. et al. A Mo doping WO3/CdZnS heterojunction photoelectrode for boosting electron storage capacity. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2023.157680
    32. Cao, W., Wang, W., Yang, Z. et al. Enhancing photocathodic protection performance by controlled synthesis of Bi/BiOBr/TiO2 NTAs Z-scheme heterojunction films. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.170675
    33. Chang, Y., Dai, Z., Suo, K. et al. Oxidized Graphitic-C3N4 with an Extended π-System for Enhanced Photoelectrochemical Property and Behavior. Crystals, 2023, 13(9): 1386. doi:10.3390/cryst13091386
    34. Chang, Y., Suo, K., Wang, Y. et al. In2S3@TiO2/In2S3 Z-Scheme Heterojunction with Synergistic Effect for Enhanced Photocathodic Protection of Steel. Molecules, 2023, 28(18): 6554. doi:10.3390/molecules28186554
    35. Jing, J., Wang, X., Chen, Z. et al. PEDOT:PSS helps to reveal the decisive role of photocurrent and photopotential on the photoinduced cathodic protection performance. Journal of Electroanalytical Chemistry, 2023. doi:10.1016/j.jelechem.2023.117607
    36. Roostaei, T., Rahimpour, M.R., Zhao, H. et al. Recent advances and progress in biotemplate catalysts for electrochemical energy storage and conversion. Advances in Colloid and Interface Science, 2023. doi:10.1016/j.cis.2023.102958
    37. Su, X., Kong, C., Qing, D. et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection | [Ti3C2/SrTiO3 复合材料的制备及其光电化学阴极保护性能]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972. doi:10.13801/j.cnki.fhclxb.20220909.004
    38. Momeni, M.M., Motalebian, M., Lee, B.-K. Photoelectrochemical performance of titania nanotubes codoped by vanadium and chromium for protection of stainless steel: A promising photoanode for continuous protection in the dark. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.169429
    39. Zhang, X., Chu, Y., Xiong, X. et al. CoP-loaded BiVO4 for highly active and robust photocathodic protection of 304 stainless steel. Materials Today Communications, 2023. doi:10.1016/j.mtcomm.2023.105848
    40. Chen, X., Zhou, G., Wang, X. et al. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. Chemosphere, 2023. doi:10.1016/j.chemosphere.2023.138194
    41. Wang, W., Ye, Y., Li, G. et al. High-efficiency photocathodic protection performance of novel MnIn2S4/TiO2 n-n heterojunction films for Q235 carbon steel in chloride-containing simulated concrete pore solution. Journal of Alloys and Compounds, 2023. doi:10.1016/j.jallcom.2023.168957
    42. Zhu, P., Ullah, Z., Zheng, S. et al. Ultrahigh current output from triboelectric nanogenerators based on UIO-66 materials for electrochemical cathodic protection. Nano Energy, 2023. doi:10.1016/j.nanoen.2023.108195
    43. Liu, L., Li, J., Song, T. et al. Synthesis of Acrylate Dual-Tone Resists and the Effect of Their Molecular Weight on Lithography Performance and Mechanism: An Investigation. Materials, 2023, 16(6): 2331. doi:10.3390/ma16062331
    44. Motalebian, M., Momeni, M.M., Ghayeb, Y. et al. Fabrication and photoelectrochemical activity of Mn/Cr co-doped titanium oxide nanostructures and their application in photocathodic protection of stainless steel. Journal of Solid State Electrochemistry, 2023, 27(2): 357-369. doi:10.1007/s10008-022-05320-w
    45. Motalebian, M., Momeni, M.M., Lee, B.-K. Novel photoanodes based on (Mo-Cr) co-doped titania nanotube for highly efficient photocathodic protection performance of stainless steel. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2022.155091
    46. Li, H., Yang, Z., Cui, X. et al. A highly efficient In2S3/Ag2S/TiO2 NTAs photoelectrodes for photocathodic protection of Q235 carbon steel under visible light. Nanotechnology, 2023, 34(4): 045705. doi:10.1088/1361-6528/ac9da8
    47. Lu, G., Sun, M., Chen, Z. et al. 3D network-like SnIn4S8/TiO2 for photoelectric electron storage and sustained cathodic protection applications in both light and dark conditions based on nanoarchitectonics. Journal of Materials Science: Materials in Electronics, 2023, 34(3): 170. doi:10.1007/s10854-022-09587-7
    48. Feng, L., Zheng, S., Zhu, H. et al. Detection of corrosion inhibition by dithiane self-assembled monolayers (SAMs) on copper. Journal of the Taiwan Institute of Chemical Engineers, 2023. doi:10.1016/j.jtice.2022.104610
    49. Duan, T., Ma, L., Xin, Y. et al. Morphology effects of in situ hydrothermally treated hierarchical TiO2 nanofilms on their photoelectrochemical cathodic protection performance against 304 stainless steel corrosion. Journal of Applied Electrochemistry, 2023, 53(1): 131-140. doi:10.1007/s10800-022-01751-5
    50. Tian, J., Chen, Z., Ma, L. et al. Fabrication of flower-like WO3/ZnIn2S4 composite with special electronic transmission channels to improve carrier separation for photoinduced cathodic protection and electron storage. Applied Surface Science, 2023. doi:10.1016/j.apsusc.2022.155019
    51. Zhang, Q., Zhang, R., Wu, R. et al. Green and high-efficiency corrosion inhibitors for metals: a review. Journal of Adhesion Science and Technology, 2023, 37(9): 1501-1524. doi:10.1080/01694243.2022.2082746
    52. Xu, S., Zhang, K., Du, L. et al. Zn3In2S6/TiO2Nanocomposites for Highly Efficient Photocathodic Protection to Carbon Steel. ACS Applied Nano Materials, 2022, 5(12): 18297-18306. doi:10.1021/acsanm.2c04149
    53. Kong, L., Tang, X., Du, X. et al. Surface engineering of TiO2@SrTiO3 heterojunction with Ni2S3 for efficient visible-light-driven photoelectrochemical cathodic protection. Journal of Alloys and Compounds, 2022. doi:10.1016/j.jallcom.2022.166861
    54. Xu, J., Dong, X., Kong, C. et al. Influence of Heat Treatment on the Photoelectrochemical Cathodic Protection Performance for SrTiO3 Films. Russian Journal of Physical Chemistry A, 2022, 96(12): 2774-2782. doi:10.1134/S0036024422120135
    55. Wang, N., Wang, J., Ning, Y. et al. Photogenerated cathodic protection properties of Ag/NiS/TiO2 nanocomposites. Scientific Reports, 2022, 12(1): 4814. doi:10.1038/s41598-022-08929-z
    56. Wipataphan, P., Laohawattanajinda, J., Wichean, T.N. et al. Photocathodic protection of amorphous and nanorod zinc oxide thin-film coatings on stainless steel AISI 304 fabricated by spray pyrolysis and hydrothermal technique. Materials Chemistry and Physics, 2022. doi:10.1016/j.matchemphys.2022.126714
    57. Zhang, T., Ni, A., Xu, Y. et al. N-doped TiO2 nanotube arrays with mixed phase for enhanced photocathodic protection of 304 stainless steel under visible light. Journal of Physics and Chemistry of Solids, 2022. doi:10.1016/j.jpcs.2022.110923
    58. Shokri, A., Sanavi Fard, M. Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies. Chemosphere, 2022. doi:10.1016/j.chemosphere.2022.135640
    59. Liu, Y., Peng, F., Yang, G.-L. et al. Coupling a titanium dioxide based heterostructure photoanode with electroless-deposited nickel-phosphorus alloy coating on magnesium alloy for enhanced corrosion protection. Journal of Materials Science and Technology, 2022. doi:10.1016/j.jmst.2022.02.049
    60. Pan, G., Ding, Z.-B., Fu, N. et al. Electron transfer accelerated polymer-TiO2 coatings for enhanced photocatalytic activity in photocathodic protection. Applied Surface Science, 2022. doi:10.1016/j.apsusc.2022.153984
    61. Liu, J., Wang, N., Zheng, F. et al. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection. Journal of Materials Science and Technology, 2022. doi:10.1016/j.jmst.2022.02.011
    62. Deng, H., Gou, X., Chen, Q. et al. Formation of smooth anodic nanoporous iron oxide film for enhancing photocathodic protection on plain carbon steel. Surface and Coatings Technology, 2022. doi:10.1016/j.surfcoat.2022.128724
    63. Helal, A., Jianqiang, Y., Eid, A.I. et al. A novel g-C3N4/In2O3/BiVO4 heterojunction photoanode for improved the photoelectrochemical cathodic protection of 304 SS stainless steel under solar light. Journal of Alloys and Compounds, 2022. doi:10.1016/j.jallcom.2022.165047
    64. Li, H., Sun, L., Li, W. Application of organosilanes in titanium-containing organic–inorganic hybrid coatings. Journal of Materials Science, 2022, 57(29): 13845-13870. doi:10.1007/s10853-022-07488-y
    65. Wang, C., Xu, X., Zhao, P. et al. Preparation of a WO3 / carbon dots / TiO2 composite nanomaterial and its photocathodic protection | [WO3 / 碳点 / TiO2 复合纳米材料的制备及其光致阴极保护作用研究]. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(4): 73-82. doi:10.13543/j.bhxbzr.2022.04.009
    66. Zhang, X., Wang, Y., Zhang, D. et al. A Comparative Study of CoNi-LDH/ZnO Film for Photocathodic Protection Applications in the Marine Environment. Frontiers in Materials, 2022. doi:10.3389/fmats.2022.904555
    67. Sandua, X., Rivero, P.J., Esparza, J. et al. Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. Coatings, 2022, 12(6): 862. doi:10.3390/coatings12060862
    68. Wilson, H., Van Rooij, A., Jenewein, K. et al. Photocorrosion of n- and p-Type Semiconducting Oxide-Covered Metals: Case Studies of Anodized Titanium and Copper. Physica Status Solidi (A) Applications and Materials Science, 2022, 219(11): 2100852. doi:10.1002/pssa.202100852
    69. Cai, J., Kong, L., Tang, X. et al. Performance enhancement of α-Fe2O3@Bi2S3 heterojunction for photocathodic protection of 304SS. Surface and Coatings Technology, 2022. doi:10.1016/j.surfcoat.2022.128376
    70. Sathasivam, K., Wang, M.-Y., Anbalagan, A.K. et al. Prolonged and Enhanced Protection Against Corrosion Over Titanium Oxide-Coated 304L Stainless Steels Having Been Irradiated With Ultraviolet. Frontiers in Materials, 2022. doi:10.3389/fmats.2022.863603
    71. Ma, X., Ma, Z., Zhang, H. et al. Interfacial Schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel. Journal of Photochemistry and Photobiology A: Chemistry, 2022. doi:10.1016/j.jphotochem.2022.113772
    72. Su, N., Ye, M., Li, J. et al. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance. Journal of the Chinese Society of Corrosion and Protection, 2022, 42(2): 267-273. doi:10.11902/1005.4537.2021.098
    73. Zhang, Y., Bao, H., Liu, X. et al. Bi2S3 nanoparticles/ZnO nanowire heterojunction films for improved photoelectrochemical cathodic protection for 304 SS under visible light. Journal of Applied Electrochemistry, 2022, 52(3): 559-571. doi:10.1007/s10800-021-01654-x
    74. Lin, Y., Liu, S. Ion-Exchange Synthesis of ZnO/ZnSe/CdSe Core/Shell Heterostructured Nanowire Photoanodes toward High-Performance Photocathodic Protection of 304 Stainless Steel. European Journal of Inorganic Chemistry, 2022, 2022(4): e202100944. doi:10.1002/ejic.202100944
    75. ZHANG, X.-M., CHEN, Z.-Y., LUO, H.-F. et al. Corrosion resistances of metallic materials in environments containing chloride ions: A review. Transactions of Nonferrous Metals Society of China (English Edition), 2022, 32(2): 377-410. doi:10.1016/S1003-6326(22)65802-3
    76. Lin, Y., Liu, S. Synthesis of ZnO/Bi2S3 Core/Shell Nanowire Array Photoanodes for Photocathodic Protection of Stainless Steel. Coatings, 2022, 12(2): 244. doi:10.3390/coatings12020244
    77. Li, W., Wei, L., Shen, T. et al. Ingenious preparation of “layered-closed” TiO2-BiVO4-CdS film and its highly stable and sensitive photoelectrochemical cathodic protection performance. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2021.132511
    78. Lachowicz, M.M., Winnicki, M. Corrosion Damage Mechanisms of TiO2 Cold-Sprayed Coatings. Archives of Metallurgy and Materials, 2022, 67(3): 975-985. doi:10.24425/amm.2022.139691
    79. Thompson, A.A., Wood, J.L., Palombo, E.A. et al. From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion. Biofouling, 2022, 38(3): 298-320. doi:10.1080/08927014.2022.2058395
    80. Wang, P., Nowotka, K., Was, G.S. Reproducing shadow corrosion on Zircaloy-2 using in-situ proton irradiation. Journal of Nuclear Materials, 2022. doi:10.1016/j.jnucmat.2021.153406
    81. Chen, F.-W., Liu, B., Jian, D.-H. et al. Research progress and existing problems of photocathodic protection technology | [光生阴极保护技术的研究进展及其存在的问题]. Cailiao Gongcheng/Journal of Materials Engineering, 2021, 49(12): 83-90. doi:10.11868/j.issn.1001-4381.2021.000469
    82. Li, J., Chu, Y., Zhang, C. et al. CoFe prussian blue decorated BiVO4 as novel photoanode for continuous photocathodic protection of 304 stainless steel. Journal of Alloys and Compounds, 2021. doi:10.1016/j.jallcom.2021.161279
    83. Lin, Y., Liu, S. Robust ZnO nanowire photoanodes with oxygen vacancies for efficient photoelectrochemical cathodic protection. Applied Surface Science, 2021. doi:10.1016/j.apsusc.2021.150694
    84. Feng, C., Chen, Z., Tian, J. et al. Fabrication of three-dimensional WO3/ZnWO4/ZnO multiphase heterojunction system with electron storage capability for significantly enhanced photoinduced cathodic protection performance. Journal of Materials Science and Technology, 2021. doi:10.1016/j.jmst.2021.02.037
    85. Chen, R., Xu, Y., Xie, X. et al. Synthesis of TiO2 nanotubes/nickel-gallium layered double hydroxide heterostructure for highly-efficient photocathodic anticorrosion of 304 stainless steel. Surface and Coatings Technology, 2021. doi:10.1016/j.surfcoat.2021.127641
    86. Kaur, P., Park, Y., Sillanpää, M. et al. Synthesis of a novel SnO2/graphene-like carbon/TiO2 electrodes for the degradation of recalcitrant emergent pharmaceutical pollutants in a photo-electrocatalytic system. Journal of Cleaner Production, 2021. doi:10.1016/j.jclepro.2021.127915
    87. Yang, G.-L., Ouyang, Y., Xie, Z.-H. et al. Nickel interlayer enables indirect corrosion protection of magnesium alloy by photoelectrochemical cathodic protection. Applied Surface Science, 2021. doi:10.1016/j.apsusc.2021.149840
    88. Yang, Y., Chen, Z., Feng, C. et al. The CdIn2S4/WO3 Nanosheet Composite Has a Significantly Enhanced Photo-electrochemical Cathodic Protection Performance and Excellent Electron Storage Capability. Chemistry - A European Journal, 2021, 27(45): 11589-11599. doi:10.1002/chem.202101479
    89. Wang, M.-L., Lin, Y., Lu, Y.-P. et al. Constructing Bi2WO6-decorated TiO2 composite films for photocathodic protection of 304 stainless steel. Journal of Iron and Steel Research International, 2021, 28(8): 1054-1063. doi:10.1007/s42243-020-00524-8
    90. Zhao, M., Yang, X., Li, X. et al. Photocathodic protection performance of Ni3S2/g-C3N4 photoanode for 304 stainless steel. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2021.115324
    91. Chen, S., Li, B., Xiao, R. et al. Design an epoxy coating with tio2/go/pani nanocomposites for enhancing corrosion resistance of q235 carbon steel. Materials, 2021, 14(10): 2629. doi:10.3390/ma14102629
    92. Zhang, X., Li, S., Sun, W. et al. Study on the corrosion behavior of copper coupled with TiO2 with different crystal structures. Corrosion Science, 2021. doi:10.1016/j.corsci.2021.109352
    93. Abdelmoneim, A., Naji, A., Wagenaars, E. et al. Outstanding stability and photoelectrochemical catalytic performance of (Fe, Ni) co-doped Co3O4 photoelectrodes for solar hydrogen production. International Journal of Hydrogen Energy, 2021, 46(24): 12915-12935. doi:10.1016/j.ijhydene.2021.01.113
    94. Momeni, M.M., Akbarnia, M. Photo-assisted electrodeposition of NiMoZn on hematite nanostructures and their photoelectrochemical application as photoanode for corrosion protection of stainless steel. Journal of Alloys and Compounds, 2021. doi:10.1016/j.jallcom.2020.158254
    95. Wen, G., Bai, P., Tian, Y. A Review of Graphene-Based Materials for Marine Corrosion Protection. Journal of Bio- and Tribo-Corrosion, 2021, 7(1): 27. doi:10.1007/s40735-020-00456-6
    96. Qiu, P., Xu, S., Zhang, K. et al. Influence of deposition potential on the photoelectrochemical cathodic protection behavior of n-type Cu@Cu2O films. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2021.114984
    97. Jing, J., Chen, Z., Feng, C. Using the photoinduced volt-ampere curves to study the p/n types of the corrosion products with semiconducting properties. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114961
    98. Liu, Y., Zhu, Z., Cheng, Y. et al. Effect of eletrodeposition temperature on the thin films of ZnO nanoparticles used for photocathodic protection of SS304. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114945
    99. Wipataphan, P., Sripianem, W., Oo, N.B. et al. Photoelectrochemical cathodic protection of amorphous zinc oxide coating on hot rolled steel SS400 in a 3 wt% NaCl solution and a Na2S-NaOH solution. Journal of Metals, Materials and Minerals, 2021, 31(4): 129-142. doi:10.14456/jmmm.2021.68
    100. Li, H., Song, W., Cui, X. et al. Preparation of SnIn4S8/TiO2 Nanotube Photoanode and Its Photocathodic Protection for Q235 Carbon Steel Under Visible Light. Nanoscale Research Letters, 2021, 16(1): 10. doi:10.1186/s11671-020-03447-1
    101. Xiong, X., Fan, L., Zhang, X. et al. Online image monitoring and kinetics study on photocathodic protection of carbon steel using α-Fe2O3 photoanode. Journal of Electroanalytical Chemistry, 2021. doi:10.1016/j.jelechem.2020.114857
    102. Xu, D., Liu, Y., Liu, Y. et al. A review on recent progress in the development of photoelectrodes for photocathodic protection: Design, properties, and prospects. Materials and Design, 2021. doi:10.1016/j.matdes.2020.109235
    103. Sun, M., Liu, X., Jing, X. et al. Small organic molecule based photoelectrodes for efficient photoelectrochemical cathodic protection. ACS Applied Electronic Materials, 2020, 2(12): 4012-4022. doi:10.1021/acsaelm.0c00829
    104. Fan, L., Zhang, X., Zhang, C. et al. A highly efficient α-Fe2O3/NiFe(OH)x photoelectrode for photocathodic protection of 304 stainless steel under visible light. Surface and Coatings Technology, 2020. doi:10.1016/j.surfcoat.2020.126407
    105. Amin, A., El-Dissouky, A. One-step synthesis of novel Cu2ZnNiO3complex oxide nanowires with tuned band gap for photoelectrochemical water splitting. Journal of Applied Crystallography, 2020. doi:10.1107/S1600576720012200
    106. Wang, C., Gao, W., Liu, N. et al. Covalent Organic Framework Decorated TiO2 Nanotube Arrays for Photoelectrochemical Cathodic Protection of Steel. Corrosion Science, 2020. doi:10.1016/j.corsci.2020.108920
    107. Liu, Y., Zhu, Z., Cheng, Y. An in-depth study of photocathodic protection of SS304 steel by electrodeposited layers of ZnO nanoparticles. Surface and Coatings Technology, 2020. doi:10.1016/j.surfcoat.2020.126158
    108. Li, W., Shen, T., Wang, Y. et al. Photoelectrochemical in Situ Energy Storage and the Anticorrosion Dual Function System Based on Loose Carbon Nitride Thick Film Electrodes. ACS Applied Electronic Materials, 2020, 2(7): 2180-2187. doi:10.1021/acsaelm.0c00377
    109. Chatterjee, S., Shyamal, S., Chandra, D. et al. Ti(IV)-containing aluminophosphate material TAPO-25 for photoelectrochemical water oxidation. Molecular Catalysis, 2020. doi:10.1016/j.mcat.2020.110876
    110. Feng, C., Chen, Z., Jing, J. et al. A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corrosion Science, 2020. doi:10.1016/j.corsci.2020.108441
    111. Xiong, X., Fan, L., Xu, Y. et al. Online corrosion monitoring of photoelectrochemical cathodic protection of carbon steel using particle video microscope. Optik, 2020. doi:10.1016/j.ijleo.2019.164091
    112. Xu, Y., Zhang, W., Yang, Y. et al. Photo-induced corrosion or protection: Determining the charge transfer in the semiconductor-metal heterojunction. Journal of Alloys and Compounds, 2020. doi:10.1016/j.jallcom.2019.152746
    113. Yang, X., Zhou, L., Cao, G. et al. Fabrication of reduced graphene oxide wrapped TiO2/SnO2 photoanode and its anticorrosion property. Optik, 2020. doi:10.1016/j.ijleo.2019.163573
    114. Durán-Álvarez, J.C., Del Angel, R., Ramírez-Ortega, D. et al. An alternative method for the synthesis of functional Au/WO3 materials and their use in the photocatalytic production of hydrogen. Catalysis Today, 2020. doi:10.1016/j.cattod.2018.09.018
    115. Saji, V.S.. Review - Photoelectrochemical Cathodic Protection in the Dark: A Review of Nanocomposite and Energy-Storing Photoanodes. Journal of the Electrochemical Society, 2020, 167(12): 121505. doi:10.1149/1945-7111/abad70
    116. Nguyen, T.A., Rajendran, S., Kakooei, S. et al. Nanomaterials for cathodic protection of metals. Corrosion Protection at the Nanoscale, 2020. doi:10.1016/B978-0-12-819359-4.00002-7
    117. Saji, V.S.. Advanced corrosion prevention approaches: Smart coating and photoelectrochemical cathodic protection. Corrosion and Fouling Control in Desalination Industry, 2020. doi:10.1007/978-3-030-34284-5_11
    118. Ngaotrakanwiwat, P., Heawphet, P., Rangsunvigit, P. Enhancement of photoelectrochemical cathodic protection of copper in marine condition by cu-doped TiO2. Catalysts, 2020, 10(2): 146. doi:10.3390/catal10020146
    119. Razavizadeh, O., Bahadormanesh, B., Ghorbani, M. et al. Effect of Photoelectrochemical Activity of ZnO-Graphene Thin Film on the Corrosion of Carbon Steel and 304 Stainless Steel. Journal of Materials Engineering and Performance, 2020, 29(1): 497-505. doi:10.1007/s11665-020-04579-2
    120. Fiaz, M., Athar, M., Rani, S. et al. One pot solvothermal synthesis of Co3O4@UiO-66 and CuO@UiO-66 for improved current density towards hydrogen evolution reaction. Materials Chemistry and Physics, 2020. doi:10.1016/j.matchemphys.2019.122320
    121. Wei, K.-N., Liu, Z., Zuo, S.-X. et al. Preparation of CeO2/Flake-like CdS Composites as High-performance Photoanodes for Photoelectrochemical Cathodic Protection | [高性能CeO2/片状CdS复合光电极材料的制备及在光阴极保护中应用]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, 34(12): 1334-1340. doi:10.15541/jim20190057
    122. Miao, B., Iqbal, A., Bevan, K.H. Utilizing Band Diagrams to Interpret the Photovoltage and Photocurrent in Photoanodes: A Semiclassical Device Modeling Study. Journal of Physical Chemistry C, 2019, 123(47): 28593-28603. doi:10.1021/acs.jpcc.9b07536
    123. Li, W., Wang, L., Zhang, Q. et al. Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2019.151681
    124. Momeni, M.M., Khansari-Zadeh, S.H., Farrokhpour, H. Fabrication of tungsten-iron-doped TiO2 nanotubes via anodization: new photoelectrodes for photoelectrochemical cathodic protection under visible light. SN Applied Sciences, 2019, 1(10): 1160. doi:10.1007/s42452-019-1157-1
    125. Basheer, A.A., Ali, I. Water photo splitting for green hydrogen energy by green nanoparticles. International Journal of Hydrogen Energy, 2019, 44(23): 11564-11573. doi:10.1016/j.ijhydene.2019.03.040
    126. Jing, J., Chen, Z., Bu, Y. et al. Significantly enhanced photoelectrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO 3 by Cr 6+ reduction and oxygen vacancy modification. Electrochimica Acta, 2019. doi:10.1016/j.electacta.2019.03.020
    127. Hosseini, M.G., Aboutalebi, K. Epoxy coating with self-healing capability based on a 2-mercaptobenzothiazole-loaded CeO2 nanocontainer. Journal of Applied Polymer Science, 2019, 136(15): 47297. doi:10.1002/app.47297
    128. Zuo, S., Liu, Z., Liu, W. et al. TiO2 nanorod arrays on the conductive mica combine photoelectrochemical cathodic protection with barrier properties. Journal of Alloys and Compounds, 2019. doi:10.1016/j.jallcom.2018.10.313
    129. Arunachalam, M., Ahn, K.-S., Kang, S.H. Oxygen evolution NiOOH catalyst assisted V2O5@BiVO4 inverse opal hetero-structure for solar water oxidation. International Journal of Hydrogen Energy, 2019, 44(10): 4656-4663. doi:10.1016/j.ijhydene.2019.01.024
    130. Xie, T., Zheng, T., Wang, R. et al. A promising CuOx/WO3 p-n heterojunction thin-film photocathode fabricated by magnetron reactive sputtering. International Journal of Hydrogen Energy, 2019, 44(8): 4062-4071. doi:10.1016/j.ijhydene.2018.12.153
    131. Sun, K., Yan, S., Yu, T. et al. Highly enhanced photoelectrochemical cathodic protection performance of the preparation of magnesium oxides modified TiO 2 nanotube arrays. Journal of Electroanalytical Chemistry, 2019. doi:10.1016/j.jelechem.2019.01.005
    132. Qian, B., Dai, H., Tang, S. et al. Enhanced photocathodic protection performance of graphene quantum dots sensitized TiO2 nanotube arrays for 304 stainless steel. Optik, 2019. doi:10.1016/j.ijleo.2018.10.027
    133. Wang, X., Lei, J., Shao, Q. et al. Preparation of ZnWO4/TiO2 composite film and its photocathodic protection for 304 stainless steel under visible light. Nanotechnology, 2019, 30(4): 045710. doi:10.1088/1361-6528/aaef9c
    134. Escobar-Alarcón, L., Iturbe-García, J.L., González-Zavala, F. et al. Hydrogen production by laser irradiation of metals in water under an ultrasonic field: A novel approach. International Journal of Hydrogen Energy, 2019, 44(3): 1579-1585. doi:10.1016/j.ijhydene.2018.11.158
    135. Montenegro-Ayo, R., Morales-Gomero, J.C., Alarcon, H. et al. Scaling up photoelectrocatalytic reactors: A TiO2 nanotube-coated disc compound reactor effectively degrades acetaminophen. Water (Switzerland), 2019, 11(12): 2522. doi:10.3390/w11122522
    136. Zhu, Y., Liu, Y., Yang, Z. Highly efficient photo-induced cathodic protection of 403SS by the all-solid-state Z-scheme ZnS-CdS-Ag@TiO2 nanoheterojunctions. International Journal of Electrochemical Science, 2019, 14(1): 815-825. doi:10.20964/2019.01.74
    137. Hejazi, S., Mohajernia, S., Wu, Y. et al. Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. Electrochemistry Communications, 2019. doi:10.1016/j.elecom.2018.11.020
    138. Kusmaya, R.A., Sahroni, T.R. Technical-economic feasibility of solar cathodic protection. IOP Conference Series: Earth and Environmental Science, 2018, 195(1): 012045. doi:10.1088/1755-1315/195/1/012045
    139. Liu, X., Chen, Z., Hou, J. et al. Effect of visible light illumination on the atmospheric corrosion behaviors of pure copper pre-deposited with NaCl particles. International Journal of Electrochemical Science, 2018, 13(12): 12238-12255. doi:10.20964/2018.12.03
    140. Li, Y., Wang, J., Li, S. et al. Solar energy protects steels against corrosion: Enhanced protection capability achieved by NiFeOx decorated BiVO4 photoanode. Materials Research Bulletin, 2018. doi:10.1016/j.materresbull.2018.08.015
    141. Zhang, J., Ur Rahman, Z., Zheng, Y. et al. Nanoflower like SnO 2 -TiO 2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel. Applied Surface Science, 2018. doi:10.1016/j.apsusc.2018.06.307
    142. Xie, T., Zheng, T., Wang, R. et al. Fabrication of CuOx thin-film photocathodes by magnetron reactive sputtering for photoelectrochemical water reduction. Green Energy and Environment, 2018, 3(3): 239-246. doi:10.1016/j.gee.2018.01.003
    143. Matloub, F.K., Sulaiman, M.M., Shareef, Z.N. Investigating the effect of PH and salt concentration on cathodic protection of pipe-lines. International Journal of Mechanical Engineering and Technology, 2018, 9(5): 474-480.
    144. Kuang, S., Zheng, W., Gu, Y. et al. Dual-functional ZnxMg1-xO solid solution nanolayer modified ZnO tussock-like nanorods with improved photoelectrochemical anti-corrosion performance. Journal of Electroanalytical Chemistry, 2018. doi:10.1016/j.jelechem.2018.03.022
    145. Joy, J., Mathew, J., George, S.C. Nanomaterials for photoelectrochemical water splitting – review. International Journal of Hydrogen Energy, 2018, 43(10): 4804-4817. doi:10.1016/j.ijhydene.2018.01.099
    146. Sripianem, W., Techapiesancharoenkij, R. Effect of Al and Ga codoping on the morphological, electronic, and optical properties of ZnO transparent conductive thin films prepared by spray pyrolysis technique. Turkish Journal of Physics, 2018, 42(6): 688-698. doi:10.3906/fiz-1807-17

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 66.2 %META: 66.2 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %China: 54.6 %China: 54.6 %France: 0.8 %France: 0.8 %Germany: 1.0 %Germany: 1.0 %India: 0.8 %India: 0.8 %Iran (ISLAMIC Republic Of): 2.6 %Iran (ISLAMIC Republic Of): 2.6 %Malaysia: 0.8 %Malaysia: 0.8 %Poland: 0.8 %Poland: 0.8 %Qatar: 0.3 %Qatar: 0.3 %Seychelles: 0.5 %Seychelles: 0.5 %Thailand: 4.1 %Thailand: 4.1 %United States: 31.2 %United States: 31.2 %其他ChinaFranceGermanyIndiaIran (ISLAMIC Republic Of)MalaysiaPolandQatarSeychellesThailandUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(22) Cited by(156)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return