Hui Wang, Zhifang Chai, Dongqi Wang. Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): A first-principles study. Green Energy&Environment, 2017, 2(1): 30-41. doi: 10.1016/j.gee.2016.11.011
Citation: Hui Wang, Zhifang Chai, Dongqi Wang. Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): A first-principles study. Green Energy&Environment, 2017, 2(1): 30-41. doi: 10.1016/j.gee.2016.11.011

Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): A first-principles study

doi: 10.1016/j.gee.2016.11.011
  • The adsorption of uranyl on hydroxylated α-SiO2(001) in the presence of a series of anionic ligands, i.e. OH, , , , , CH3COO (Ac), C6H5COO (), C6H5O (PhO), was studied by the periodic density functional theory (DFT) implemented in the Vienna ab initio simulation package (VASP). For the ligands other than OH and PhO, only the bidentate coordination modes to the uranyl were considered. The excess charge effect of a charged system was first evaluated by constructing models with net charge as is or neutralized by creating defect at the bottom of silica, and the results show that a neutralized model, even with defects, is more realistic than the charged ones. All uranyl species prefer to bind with the deprotonated site (O) rather than the protonated one (OH), which suggests that the increase of pH, which leads to the deprotonation of the surface, may enhance the uranyl adsorption. On the other hand, the anionic ligands, which are formed at higher pH, have negative effects. The weaker acidic ligands, such as H2CO3, H3PO4 and H2O, whose speciation in solutions is sensitive to the fluctuation of pH, have more complex effect on the uranyl adsorption than strong acids or bases. Humic substances may coordinate with uranyl through carboxyl and phenolic groups, with the carboxyl group bound stronger. The ternary complexes with one bidentate (or monodentate) anion and one (or two) H2O as ligands, which leads to the uranyl penta-coordinated in its equatorial plane, are more favorable than other configurations when bound to the same anionic ligand. Both the charged nature and the coordination behavior of an anionic ligand are relevant to its ability to influence the adsorption of uranyl on the mineral surface. In addition, the uranyl species adsorbed at the surface functionalized by anionic ligands were also addressed, and the functionalized surfaces have weaker interaction with hydrated uranyl dication.

     

  • loading
  • [1]
    D.-M.François Environ. Sci. Technol., 48 (2014),pp. 25-26
    [2]
    M.Pavelescu, A.Pavelescu, A.Sandulescu Rom. J. Phys., 50 (2005),pp. 473-491
    [3]
    W.Runde Los Alamos Sci., 26 (2000),pp. 392-411
    [4]
    I.Grenthe, R.J.M.Fuger, R.J.Konings, et al.
    [5]
    G.R.Choppin J. Radioanal. Nucl. Chem., 273 (2007),pp. 695-703
    [6]
    D.L.Clark, D.E.Hobart, M.P.Neu Chem. Rev., 95 (1995),pp. 25-48
    [7]
    T.Reich, H.Moll, T.Arnold, et al. J. Electron. Spectrosc., 96 (1998),pp. 237-243
    [8]
    E.R.Sylwester, E.A.Hudson, P.G.Allen Geochim. Cosmochim. Acta, 64 (2000),pp. 2431-2438
    [9]
    J.D.Prikryl, A.Jain, D.R.Turner, et al. J. Contam. Hydrol., 47 (2001),pp. 241-253
    [10]
    H.Zhang, Z.Tao J. Radioanal. Nucl. Chem., 254 (2002),pp. 103-107
    [11]
    A.Froideval, M.Del Nero, R.Barillon, et al. J. Colloid Interf. Sci., 266 (2003),pp. 221-235
    [12]
    T.Arnold, S.Utsunomiya, G.Geipel, et al. Environ. Sci. Technol., 40 (2006),pp. 4646-4652
    [13]
    J.N.Malin, J.G.Holland, S.A.Saslow, et al. J. Phys. Chem. C, 115 (2011),pp. 13353-13360
    [14]
    H.Zhang, C.Wen, Z.Tao, et al. J. Radioanal. Nucl. Chem., 287 (2011),pp. 13-20
    [15]
    E.S.Ilton, Z.Wang, J.F.Boily, et al. Environ. Sci. Technol., 46 (2012),pp. 6604-6611
    [16]
    A.S.Kar, S.Kumar, B.S.Tomar Colloid Surf. A Physicochem. Eng. Asp., 395 (2012),pp. 240-247
    [17]
    E.K.Lesher, B.D.Honeyman, J.F.Ranville Geochim. Cosmochim. Acta, 109 (2013),pp. 127-142
    [18]
    U.Gabriel, L.Charlet, C.W.Schlapfer, et al. J. Colloid Interf. Sci., 239 (2001),pp. 358-368
    [19]
    R.Steudtner, S.Sachs, K.Schmeide, et al. Radiochim. Acta, 99 (2011),pp. 687-692
    [20]
    E.S.Ilton, J.S.Lazama Pacheco, J.R.Bargar, et al. Environ. Sci. Technol., 46 (2012),pp. 9428-9436
    [21]
    D.M.Singer, S.M.E.Chatman, E.S.Ilton, et al. Environ. Sci. Technol., 46 (2012),pp. 3811-3820
    [22]
    D.M.Singer, S.M.E.Chatman, E.S.Ilton, et al. Environ. Sci. Technol., 46 (2012),pp. 3821-3830
    [23]
    S.N.Kerisit, A.R.Felmy, E.S.Ilton Environ. Sci. Technol., 45 (2011),pp. 2770-2776
    [24]
    E.S.Ilton, J.F.Boily, E.C.Buck, et al. Environ. Sci. Technol., 44 (2010),pp. 170-176
    [25]
    E.S.Ilton, A.Haiduc, C.L.Cahill, et al. Inorg. Chem., 44 (2005),pp. 2986-2988
    [26]
    T.I.Docrat, J.F.W.Mosselmans, J.M.Charnock, et al. Inorg. Chem., 38 (1999),pp. 1879-1882
    [27]
    S.Amayri, T.Reich, T.Arnold, et al. J. Solid State Chem., 178 (2005),pp. 567-577
    [28]
    J.Vázquez, C.Bo, J.M.Poblet, et al. Inorg. Chem., 42 (2003),pp. 6136-6141
    [29]
    K.Mereiter Acta Crystallogr., C44 (1998),pp. 1175-1178
    [30]
    A.Coda, A.Della Giusta, V.Tazzoli Acta Crystallogr., B37 (1981),pp. 1496-1500
    [31]
    G.Meinrath J. Radioanal. Nucl. Chem., 211 (1996),pp. 349-362
    [32]
    A.Anderson, C.Chieh, D.E.Irish, et al. Can. J. Chem., 58 (1980),pp. 1651-1658
    [33]
    R.J.Reeder, M.Nugent, G.M.Lamble, et al. Environ. Sci. Technol., 34 (2000),pp. 638-644
    [34]
    Y.Suzuki, T.Sato, H.Isobe, et al. Am. Mineral., 90 (2005),pp. 1308-1314
    [35]
    J.-F.Boily, K.M.Rosso Phys. Chem. Chem. Phys., 13 (2011),pp. 7845-7851
    [36]
    X.Wang, S.Yang, W.Shi, et al. Environ. Sci. Technol., 49 (2015),pp. 11721-11728
    [37]
    Y.Sun, S.Yang, Y.Chen, et al. Environ. Sci. Technol., 49 (2015),pp. 4255-4262
    [38]
    Y.Sun, Z.-Y.Wu, X.Wang, et al. Environ. Sci. Technol., 50 (2016),pp. 4459-4467
    [39]
    D.M.Sherman, C.L.Peacock, C.G.Hubbard Geochim. Cosmochim. Acta, 72 (2008),pp. 298-310
    [40]
    A.Singh, J.G.Catalano, K.U.Ulrich, et al. Environ. Sci. Technol., 46 (2012),pp. 6594-6603
    [41]
    C.Joseph, L.R.Van Loon, A.Jakob, et al. Geochim. Cosmochim. Acta, 109 (2013),pp. 74-89
    [42]
    A.Křepelová, T.Reich, S.Sachs, et al. J. Colloid Interf. Sci., 319 (2008),pp. 40-47
    [43]
    S.Sachs, G.Bernhard J. Radioanal. Nucl. Chem., 290 (2011),pp. 17-29
    [44]
    K.Xia, F.Weesner, W.F.Bleam, et al. Soil Sci. Soc. Am. J., 62 (1998),pp. 1240-1246
    [45]
    H.Wang, Z.Chai, D.Wang Dalton Trans., 44 (2014),pp. 1646-1654
    [46]
    Q.J.Pan, S.O.Odoh, A.M.Asaduzzaman, et al. Chem. Eur. J., 18 (2012),pp. 1458-1466
    [47]
    J.Roques, E.Veilly, E.Simoni Int. J. Mol. Sci., 10 (2009),pp. 2633-2661
    [48]
    W.Yang, A.Zaoui Appl. Clay Sci., 80–81 (2013),pp. 98-106
    [49]
    B.Martorell, A.Kremleva, S.Krüger, et al. J. Phys. Chem. C, 114 (2010),pp. 13287-13294
    [50]
    A.Kremleva, S.Krüger, N.Rösch Radiochim. Acta, 98 (2010),pp. 635-646
    [51]
    X.Tan, M.Fang, X.Wang Molecules, 15 (2010),pp. 8431-8468
    [52]
    V.A.Glezakou, W.A.de Jong J. Phys. Chem. A, 115 (2011),pp. 1257-1263
    [53]
    A.A.Skelton, D.J.Wesolowski, P.T.Cummings Langmuir, 27 (2011),pp. 8700-8709
    [54]
    K.Sebbari, J.Roques, E.Simoni, et al. Surf. Sci., 606 (2012),pp. 1135-1141
    [55]
    D.Wang, W.F.van Gunsteren, Z.Chai Chem. Soc. Rev., 41 (2012),pp. 5836-5865
    [56]
    X.Tan, M.Fang, X.Wang Molecules, 15 (2010),pp. 8431-8468
    [57]
    A.Kremleva, S.Krüger, N.Rösch Geochim. Cosmochimi. Acta, 75 (2011),pp. 706-718
    [58]
    G.Kresse, J.Hafner Phys. Rev. B, 47 (1993),pp. 558-561
    [59]
    G.Kresse, J.Furthermüller Phys. Rev. B, 54 (1996),pp. 11169-11186
    [60]
    J.P.Perdew, K.Burke, M.Ernzerhof Phys. Rev. Lett., 77 (1996),pp. 3865-3868
    [61]
    P.E.Blöchl Phys. Rev. B, 50 (1994),pp. 17953-17979
    [62]
    G.Kresse, D.Joubert Phys. Rev. B, 59 (1999),pp. 1758-1775
    [63]
    http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html VASP the GUIDE. Vienna, March 26, 2015.
    [64]
    K.Mathew, R.Sundararaman, K.Letchworth-Weaver, et al. J. Chem. Phys., 140 (2014)
    [65]
    H.-R.Schulten Fresenius J. Anal. Chem., 351 (1995),pp. 62-73
    [66]
    M.Sundararajan, G.Rajaraman, S.K.Ghosh Phys. Chem. Chem. Phys., 13 (2011),pp. 18038-18046
    [67]
    P.C.Burns, C.M.Alexopoulos, P.J.Hotchkiss, et al. J. Inorg. Chem., 43 (2004),pp. 1816-1818
    [68]
    W.A.de Jong, E.Aprà, T.L.Windus, et al. J. Phys. Chem. A, 109 (2005),pp. 11568-11577
    [69]
    V.E.Jackson, K.E.Gutowski, D.A.Dixon J. Phys. Chem. A, 117 (2013),pp. 8939-8957
    [70]
    G.A.Barclay, T.M.Sabine, J.C.Taylor Acta Crystallogr., 19 (1965),pp. 205-209
    [71]
    S.V.Krivovichev, P.C.Burns Radiochemistry, 46 (2004),pp. 16-19
    [72]
    S.P.McGlynn, J.K.Smith, W.C.Neely J. Chem. Phys., 35 (1961),pp. 105-116
    [73]
    Q.Y.Wu, J.H.Lan, C.Z.Wang, et al. J. Phys. Chem. A, 118 (2014),pp. 2149-2158
    [74]
    J.P.Austin, N.A.Burton, I.H.Hillier, et al. Phys. Chem. Chem. Phys., 11 (2009),pp. 1143-1145
    [75]
    D.Majumdar, K.Balasubramanian, H.Nitsche Chem. Phys. Lett., 361 (2002),pp. 143-151
    [76]
    D.Majumdar, S.Roszak, K.Balasubramanian, et al. Chem. Phys. Lett., 372 (2003),pp. 232-241
    [77]
    W.Tang, E.Sanville, G.Henkelman J. Phys. Condens. Matter, 21 (2009)
    [78]
    E.Sanville, S.D.Kenny, R.Smith, et al. J. Comp. Chem., 28 (2007),pp. 899-908
    [79]
    G.Henkelman, A.Arnaldsson, H.Jónsson Comput. Mater. Sci., 36 (2006),pp. 254-360
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return