Mingjun Xuan, Jie Zhao, Jingxin Shao, Qi Li, Junbai Li. Perspective of energy transfer from light energy into biological energy. Green Energy&Environment, 2017, 2(1): 18-22. doi: 10.1016/j.gee.2016.11.005
Citation: Mingjun Xuan, Jie Zhao, Jingxin Shao, Qi Li, Junbai Li. Perspective of energy transfer from light energy into biological energy. Green Energy&Environment, 2017, 2(1): 18-22. doi: 10.1016/j.gee.2016.11.005

Perspective of energy transfer from light energy into biological energy

doi: 10.1016/j.gee.2016.11.005
  • Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. Like the hydro-energy, wind energy, and tidal energy, light energy as a renewable, clean, and widespread energy can be easily harvested. In microcosmic scale, some specific proteins and enzymes in green plants and bacteria play an important role in light harvest and energy conversion via photosynthesis. Inspired by the biomimetic sparks, these bioactive macromolecules and some artificially synthetic unites have been integrated together to improve the light-harvesting, and enhance their utilization efficiency. In this feature article, we primarily discuss that how to create the bio-inorganic hybrid energy converted system via biomimetic assembly strategy and artificially achieve the transformation from light into bioenergy, meanwhile highlight some promising works.

     

  • loading
  • [1]
    M.Debije Nature, 519 (2015),pp. 298-299
    [2]
    A.B.Munir, F.Muhammad-Sukki, N.A.Bani Nature, 529 (2016)
    [3]
    M.Guo, W.Song, J.Buhain Renew. Sustain. Energy Rev., 42 (2015),pp. 712-715
    [4]
    J.M.Walter, D.Greenfield, J.Liphardt Curr. Opin. Biotechnol., 21 (2010),pp. 265-270
    [5]
    E.R.Moellering, B.Muthan, C.Benning Science, 330 (2010),pp. 226-228
    [6]
    Y.Kurashige, G.K.-L.Chan, T.Yanai Nat. Chem., 5 (2013),pp. 660-666
    [7]
    L.Duan, F.Bozoglian, S.Mandal, et al. Nat. Chem., 4 (2012),pp. 418-423
    [8]
    Y.Umena, K.Kawakami, J.Shen, et al. Nature, 473 (2011),pp. 55-60
    [9]
    J.Li, X.Feng, J.Fei, et al. J. Mater. Chem. A, 4 (2016),pp. 12197-12204
    [10]
    P.Cai, X.Feng, J.Fei, et al. Nanoscale, 7 (2015),pp. 10908-10911
    [11]
    M.Xuan, Z.Wu, J.Shao, et al. J. Am. Chem. Soc., 138 (2016),pp. 6492-6497
    [12]
    G.Steinberg-Yfrach, P.A.Liddell, S.Huang, et al. Nature, 385 (1997),pp. 239-241
    [13]
    L.Kuang, T.L.Olson, S.Lin, et al. J. Phys. Chem. Lett., 5 (2014),pp. 787-791
    [14]
    S.Rao, Z.Guo, D.Chen, et al. Phys. Chem. Chem. Phys., 15 (2013),pp. 15821-15824
    [15]
    D.Harder, S.Hirschi, Z.Ucurum, et al. Angew. Chem. Int. Ed., 55 (2016),pp. 8846-8849
    [16]
    Q.Ling, W.Huang, A.Baldwin, et al. Science, 338 (2012),pp. 655-659
    [17]
    Y.Yoshida, H.Kuroiwa, O.Misumi, et al. Science, 313 (2006),pp. 1435-1438
    [18]
    M.Kato, T.Cardona, A.W.Rutherford, et al. J. Am. Chem. Soc., 134 (2012),pp. 8332-8335
    [19]
    M.Schliwa, G.Woehlke Nature, 422 (2003),pp. 759-765
    [20]
    M.G.L.van den Heuvel, G.Dekker Science, 317 (2007),pp. 333-336
    [21]
    R.O.Mackender, R.M.Leech Nature, 22 (1970),pp. 1347-1349
    [22]
    S.Kikuchi, J.Bédard, M.Hirano, et al. Science, 339 (2013),pp. 571-574
    [23]
    G.D.Farquhar, J.R.Ehleringer, K.T.Hubic Annu. Rev. Plant Physiol. Plant Mol. Biol., 40 (1989),pp. 503-537
    [24]
    G.H.Krause Annu. Rev. Plant Physiol. Plant Mol. Biol., 42 (1991),pp. 313-349
    [25]
    Y.Nishiyama, S.I.Allakhverdiev, N.Murata Biochim. Biophys. Acta, 1757 (2006),pp. 742-749
    [26]
    M.R.Wasielewski Chem. Rev., 92 (1992),pp. 435-461
    [27]
    J.E.Mullet, J.J.Burke, C.J.Arntzen Plant Physiol., 65 (1980),pp. 814-822
    [28]
    M.P.Johnson, T.K.Goral, C.D.P.Duffy, et al. Plant Cell, 23 (2011),pp. 1468-1479
    [29]
    Q.He, Y.Cui, J.Li Chem. Soc. Rev., 38 (2009),pp. 2292-2303
    [30]
    M.Shibata, H.Yamashita, T.Uchihashi, et al. Nat. Nanotechnol., 5 (2010),pp. 208-212
    [31]
    J.Zhang, K.Mizuno, Y.Murata, et al. Proteins, 81 (2013),pp. 1585-1592
    [32]
    J.Shao, M.Xuan, L.Dai, et al. Angew. Chem. Int. Ed., 54 (2015),pp. 12782-12787
    [33]
    M.Xuan, J.Zhao, J.Shao, et al. J. Colloid Interface Sci., 487 (2017),pp. 107-117
    [34]
    M.Xuan, J.Shao, L.Dai, et al. Adv. Healthc. Mater., 4 (2015),pp. 1645-1652
    [35]
    J.Shao, M.Xuan, Q.He, et al. Curr. Drug Targets (2016)
    [36]
    J.Shao, M.Xuan, T.Si, et al. Nanoscale, 7 (2015),pp. 19092-19098
    [37]
    X.Yang, G.Tian, N.Jiang, et al. Energy Environ. Sci., 5 (2012),pp. 5540-5563
    [38]
    G.Steinberg-Yfrach, J.Rigaud, E.N.Durantini, et al. Nature, 392 (1998),pp. 479-483
    [39]
    H.-J.Choi, C.D.Montemagno Nano Lett., 5 (2005),pp. 2538-2542
    [40]
    D.Wendell, J.Todd, C.Montemagno Nano Lett., 10 (2010),pp. 3231-3236
    [41]
    X.Feng, Y.Jia, P.Cai, et al. ACS Nano, 10 (2016),pp. 556-561
    [42]
    D.Hvasanov, J.R.Peterson, P.Thordarson Chem. Sci., 4 (2013),pp. 3833-3838
    [43]
    V.Kapoor, D.Wendell Nano Lett., 13 (2013),pp. 2189-2193
    [44]
    C.A.Schalley, K.Beizai, F.Vögtle Acc. Chem. Res., 34 (2001),pp. 465-476
    [45]
    Q.He, L.Duan, W.Qi, et al. Adv. Mater., 20 (2008),pp. 2933-2937
    [46]
    H.Hess, G.D.Bachand Mater. Today, 8 (2005),pp. 22-29
    [47]
    W.Junge, D.Müller Science, 333 (2011),pp. 704-705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (135) PDF downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return