Monica Garcia, Hanna K. Knuutila, Sai Gu. Thermodynamic modelling of unloaded and loaded N,N-diethylethanolamine solutions. Green Energy&Environment, 2016, 1(3): 246-257. doi: 10.1016/j.gee.2016.11.003
Citation: Monica Garcia, Hanna K. Knuutila, Sai Gu. Thermodynamic modelling of unloaded and loaded N,N-diethylethanolamine solutions. Green Energy&Environment, 2016, 1(3): 246-257. doi: 10.1016/j.gee.2016.11.003

Thermodynamic modelling of unloaded and loaded N,N-diethylethanolamine solutions

doi: 10.1016/j.gee.2016.11.003
  • Chemical absorption is a crucial step for several chemical processes such as ammonia production, coal gasification, methane reforming, ethylene oxide manufacturing and treatment of associated gas streams [1]. It is considered one of the main processes to eliminate CO2 emissions from power plants by post-combustion. Use of new solvents are of high interest in chemical absorption for carbon capture. For the design of the absorption and desorption columns it is essential to know the vapour–liquid equilibrium (VLE), heat of absorption and densities. N,N-diethylethanolamine (DEEA) appeared as one of the amines with the lowest amount of energy needed for its regeneration [2], which would directly decrease the operation costs. DEEA has a high CO2 loading of 1 mol/mol of amine compared to the traditional MEA solvent (0.5 mol/mol amine) and is obtained from renewable sources [1]. The main weakness is its low absorption rate and consequently the use of promoters is desirable. In this work, a thermodynamic model based on the electrolyte non-random two-liquid theory (eNRTL) was created and fitted to correlate and predict the partial and total pressures of the unloaded and loaded aqueous DEEA solutions. New interaction parameters were obtained for the binary and tertiary system. This model represents the vapour pressures of the pure components, DEEA and H2O, with AARD of 1.9% and 1.73% respectively. Furthermore, the fitted model predicts the total pressure above the binary system, H 2O-DEEA, with AARD of 0.05%. The excess of enthalpy and densities are predicted with AARD of 5.63% and 1.38% respectively. The tertiary system, H2O-DEEA-CO2, is fitted for 2 M and 5 M DEEA solutions with loading between 0.042 and 0.9 mol CO2/mol amine up to 80 °C. Results of CO2 partial pressures and total pressures are reproduced, with AARD of 19.45% and 16.18% respectively. Densities are predicted with an AARD of 1.52%.

     

  • loading
  • [1]
    P.D.Vaidya, E.Y.Kenig
    [2]
    I.Kim, H.F.Svendsen Int. J. Greenh. Gas. Control, 5 (3),pp. 390-395
    [3]
    D.Byles, M.P.Conservative, N.Warwickshire, et al.
    [4]
    European Commission Eur. Comm. (2014)
    [5]
    M.Gupta, E.F.Da Silva, H.F.Svendsen Energy Proc., 51 (1876),pp. 161-168
    [6]
    I.von Harbou, H.P.Mangalapally, H.Hasse Int. J. Greenh. Gas. Control, 18 (2013),pp. 305-314
    [7]
    H.P.Mangalapally, R.Notz, S.Hoch, et al. Energy Proc., 1 (1),pp. 963-970
    [8]
    Y.Artanto, J.Jansen, P.Pearson, et al. Fuel, 101 (2012),pp. 264-275
    [9]
    W.Conway, Y.Beyad, P.Feron, et al. Energy Proc., 63 (2014),pp. 1835-1841
    [10]
    C.Chen, Z.Xu, S.Wang J. Combust. Sci. Technol., 19 (2),pp. 103-108
    [11]
    U.Liebenthal, D.D.D.Pinto, J.G.M.-S.Monteiro, et al. Energy Proc., 37 (2013),pp. 1844-1854
    [12]
    P.C. Chen, C.C. Liao, 3 (4) (2014) 78–82.
    [13]
    P.B.Konduru, P.D.Vaidya, E.Y.Kenig
    [14]
    H.Kierzkowska-Pawlak Int. J. Greenh. Gas. Control, 37 (2015),pp. 76-84
    [15]
    A.Hartono, F.Saleem, M.Waseem Arshad, et al. Chem. Eng. Sci., 101 (2013),pp. 401-411
    [16]
    M.W.Arshad, N.Von Solms, K.Thomsen, et al. Energy Proc., 37 (1876),pp. 1532-1542
    [17]
    P.Brœder, H.F.Svendsen Energy Proc., 23 (1876),pp. 45-54
    [18]
    W.Conway, S.Bruggink, Y.Beyad, et al. Chem. Eng. Sci., 126 (2015),pp. 446-454
    [19]
    A.Kohl, R.Nielsen
    [20]
    J.G.M.S.Monteiro, D.D.D.Pinto, S.a H.Zaidy, et al. Int. J. Greenh. Gas. Control, 19 (2013),pp. 432-440
    [21]
    Z.Xu, S.Wang, G.Qi, et al. Int. J. Greenh. Gas. Control, 29 (2014),pp. 92-103
    [22]
    H.Touhara, S.Okazaki, F.Okino, et al. J. Chem. Thermodyn., 14 (1982),pp. 145-156
    [23]
    C.Mathonat, Y.Maham, A.E.Mather, et al. J. Chem. Eng. Data, 42 (96),pp. 993-995
    [24]
    M.Waseem Arshad, K.Thomsen, N.von Solms
    [25]
    D.D.D.Pinto, J.G.M.-S.Monteiro, B.Johnsen, et al. Int. J. Greenh. Gas. Control, 25 (2014),pp. 173-185
    [26]
    NIST chemistry webbook, National Institute of Standards and Technology (http://webbook.nist.gov/chemistry).
    [27]
    I.Kim, H.F.Svendsen, E.Børresen J. Chem. Eng. Data, 53 (11),pp. 2521-2531
    [28]
    B.Hawrylak, S.E.Burke, R.Palepu J. Solut. Chem., 29 (6),pp. 575-594
    [29]
    F.Zhang, H.-P.Li, M.Dai, et al. Thermochim. Acta, 254 (1995),pp. 347-357
    [30]
    K.Klepáčová, P.J.G.Huttenhuis, P.W.J.Derks, et al. J. Chem. Eng. Data, 56 (2011),pp. 2242-2248
    [31]
    C.L.Yaws, P.K.Narasimhan Thermophys. Prop. Chem. Hydrocarb. (973),pp. 1-95
    [32]
    [33]
    T.L.Donaldson, Y.N.Nguyen Ind. Eng. Chem. Fundam., 19 (3),pp. 260-266
    [34]
    G.F.Versteeg, W.P.M.van Swaaij Chem. Eng. Sci., 43 (3),pp. 587-591
    [35]
    D.M.Austgen, G.T.Rochelle, C.-C.Chen Ind. Eng. Chem. Res. (1967),pp. 1060-1073
    [36]
    T.J.Edwards, G.Maurer, J.Newman, et al. AIChE J., 24 (6),pp. 966-976
    [37]
    C.-C.Chen, L.B.Evans Alche J., 32 (3),pp. 444-454
    [38]
    F.Calvin, R.P.Danner J. Chem. Eng. Data, 17 (2),pp. 236-241
    [39]
    S.Kapteina, K.Slowik, S.P.Verevkin, et al. J. Chem. Eng. Data, 50 (2),pp. 398-402
    [40]
    S.Mokraoui, A.Valtz, C.Coquelet, et al. Thermochim. Acta, 440 (2),pp. 122-128
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (65) PDF downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return