Shamim Haider, Arne Lindbråthen, May-Britt Hägg. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy&Environment, 2016, 1(3): 222-234. doi: 10.1016/j.gee.2016.10.003
Citation: Shamim Haider, Arne Lindbråthen, May-Britt Hägg. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology. Green Energy&Environment, 2016, 1(3): 222-234. doi: 10.1016/j.gee.2016.10.003

Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

doi: 10.1016/j.gee.2016.10.003
  • A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF) membrane and compare with a commercially available polymeric membrane (polyimide) through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD) and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs) significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP)/m2 h bar) and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure). The highest performance recorded through experiments (CHF and PORCHF) was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV) was calculated for base case and optimal pressure (50 bar for CHF and PORCHF). The results indicated that recycle ratio (recycle/feed) ranged from 0.2 to 10, specific energy from 0.15 to 0.8 () and specific membrane area from 45 to 4700 (). The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm 3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for the best cascade is 1.6 months.

     

  • • Biogas upgrading using CO2 selective membranes. • Multistage membrane system for CO2/CH4 separation. • Optimization of process conditions based on Hysys simulations. • Techno-economical evaluation of multistage membrane system for 97.5% CH4 purity and 99.5% CH4 recovery. • Comparison between polymeric membrane and carbon membrane technologies.
  • loading
  • [1]
    Z.Song, C.Zhang, G.Yang, et al. Renew. Sustain. Energy Rev., 33 (2014),pp. 204-213
    [2]
    R.H.Williams
    [3]
    M.SoltaniehS, K.Thambimuthu, J.C.Abanades
    [4]
    H.Yang, Z.Xu, M.Fan, et al. J. Environ. Sci., 20 (2008),pp. 14-27
    [5]
    Anon
    [6]
    S.Rasi, A.Veijanen, J.Rintala Energy, 32 (2007),pp. 1375-1380
    [7]
    J.B.Holm-Nielsen, T.Al Seadi, P.Oleskowicz-Popiel Biores. Tech., 100 (2009),pp. 5478-5484
    [8]
    S.S.Hosseini, N.Peng, T.S.Chung J. Membr. Sci., 349 (2010),pp. 156-166
    [9]
    L.Yingjian, Q.Qi, H.Xiangzhu, et al. Sustain. Energy Technol. Assess., 6 (2014),pp. 25-33
    [10]
    M.Scholz, M.Alders, T.Lohaus, et al. J. Membr. Sci., 474 (2015),pp. 1-10
    [11]
    A.Molino, M.Miglion, B.Bikson, et al. Fuel, 107 (2013),pp. 585-592
    [12]
    L.Yang, X.Ge, C.Wan, et al. Renew. Sustain. Energy Rev., 40 (2014),pp. 1133-1152
    [13]
    E.Ryckebosch, M.Drouillon, H.Vervaeren Biomass Bioenerg., 35 (2011),pp. 1633-1645
    [14]
    A.Wellinger, A.Lindberg
    [15]
    D.A.Ken Krich, J.P.Batmale, J.Benemann, et al.
    [16]
    B.Rutledge
    [17]
    R.Baker Membr. Tech. (2001),pp. 5-10
    [18]
    Z.Dai, R.D.Noble, D.L.Gin, et al. J. Membr. Sci., 497 (2016),pp. 1-20
    [19]
    A.L.Kohl, R.Nielsen
    [20]
    J.A.Lie, M.B.Hägg J. Membr. Sci., 284 (2006),pp. 79-86
    [21]
    J.Ahmad, M.B.Hägg J. Membr. Sci., 427 (2013),pp. 73-84
    [22]
    S.Kim, S.H.Han, Y.M.Lee J. Membr. Sci., 403–404 (2012),pp. 169-178
    [23]
    Y.Zhang, J.Sunarso, S.Liu, et al. Int. J. Greenh. Gas. Control., 12 (2013),pp. 84-107
    [24]
    J.A. Lie, M.B. Hagg. (US20100162887A1, 2010), chap. US 2010/0162887 A1.
    [25]
    L.M.Robeson J. Membr. Sci., 320 (2008),pp. 390-400
    [26]
    L.M.Robeson J. Membr. Sci., 62 (1991),pp. 165-185
    [27]
    S.Kanehashi, T.Nakagawa, K.Nagai, et al. J. Membr. Sci., 298 (2007),pp. 147-155
    [28]
    N.Tanihara, H.Shimazaki, Y.Hirayama, et al. J. Membr. Sci., 160 (1999),pp. 179-186
    [29]
    D.Q.Vu, W.J.Koros, S.J.Miller Ind. Eng. Chem. Res., 41 (2002),pp. 367-380
    [30]
    A.Makaruk, M.Miltner, M.Harasek Sep. Purif. Technol., 74 (2010),pp. 83-92
    [31]
    L.Deng, M.B.Hägg Int. J. Greenh. Gas. Control., 4 (2010),pp. 638-646
    [32]
    C.Micale Energy Proced., 82 (2015),pp. 971-977
    [33]
    J.A.Lie, T.Vassbotn, M.B.Hagg, et al. Int. J. Greenh. Gas. Control., 1 (2007),pp. 309-317
    [34]
    D.Grainger, M.-B.Hägg Fuel, 87 (2008),pp. 14-24
    [35]
    X.He, J.Arvid Lie, E.Sheridan, et al. Energy Proced., 1 (2009),pp. 261-268
    [36]
    A.Hussain, M.-B.Hägg J. Membr. Sci., 359 (2010),pp. 140-148
    [37]
    B.Belaissaoui, Y.Le Moullec, D.Willson, et al. J. Membr. Sci., 415–416 (2012),pp. 424-434
    [38]
    A.Soffer, H.Cohen
    [39]
    X.He, J.A.Lie, E.Sheridan, et al. Ind. Eng. Chem. Res., 50 (2011),pp. 2080-2087
    [40]
    F.Falbo, F.Tasselli, A.Brunetti, et al. Braz. J. Chem. Eng., 31 (2014),pp. 1023-1034
    [41]
    M.Scholz, T.Melin, M.Wessling Renew. Sustain. Energy Rev., 17 (2013),pp. 199-212
    [42]
    M.Harasimowicz, P.Orluk, G.Zakrzewska-Trznadel, et al. J. Hazard. Mater., 144 (2007),pp. 698-702
    [43]
    P.Weiland Appl. Microbiol. Biot., 85 (2010),pp. 849-860
    [44]
    J.D.Wind, D.R.Paul, W.J.Koros J. Membr. Sci., 228 (2004),pp. 227-236
    [45]
    S.P.Kaldis, G.Skodras, G.P.Sakellaropoulos Fuel Process. Technol., 85 (2004),pp. 337-346
    [46]
    M.Ungerank, G.Baumgarten, M.Priske, et al.
    [47]
    M.Mulder
    [48]
    W.J.Koros
    [49]
    X.He, C.Fu, M.-B.Hägg Chem. Eng. J., 268 (2015),pp. 1-9
    [50]
    A.Lindbråthen, D.R.Grainger, M.B.Hägg Sep. Sci. Technol., 42 (2007),pp. 3049-3070
    [51]
    M.S.Peters, K.D.Timmerhaus
    [52]
    W.D.Baasel
    [53]
    D.J.Stookey, C.J.Patton, G.L.Malcolm
    [54]
    W.J.Koros, R.Mahajan J. Membr. Sci., 175 (2000),pp. 181-196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (155) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return