Nana Yan, Baozeng Ren, Bin Wu, Di Bao, Xiangping Zhang, Jingheng Wang. Multi-objective optimization of biomass to biomethane system. Green Energy&Environment, 2016, 1(2): 156-165. doi: 10.1016/j.gee.2016.05.001
Citation: Nana Yan, Baozeng Ren, Bin Wu, Di Bao, Xiangping Zhang, Jingheng Wang. Multi-objective optimization of biomass to biomethane system. Green Energy&Environment, 2016, 1(2): 156-165. doi: 10.1016/j.gee.2016.05.001

Multi-objective optimization of biomass to biomethane system

doi: 10.1016/j.gee.2016.05.001
  • The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, and digestate recycling. We propose a multicriteria mixed integer nonlinear programming (MINLP) model that seeks to minimize the energy consumption and maximize the green degree and the biomethane production constrained by technology selection, mass balance, energy balance, and environmental impact. A multi-objective MINLP model is proposed and solved with a fast nondominated sorting genetic algorithm II (NSGA-II). The resulting Pareto-optimal surface reveals the trade-off among the conflicting objectives. The optimal results indicate quantitatively that higher green degree and biomethane production objectives can be obtained at the expense of destroying the performance of the energy consumption objective.

     

  • loading
  • [1]
    M.Huang, W.Han, J.Wan, et al. J. Chem. Technol. Biotechnol., 91 (1),pp. 226-233
    [2]
    U.Zaher, R.Li, U.Jeppsson, et al. Water Res., 43 (2009),pp. 2717-2727
    [3]
    B.Mahanty, M.Zafar, M.J.Han, et al. Waste Manage, 34 (6),pp. 1018-1024
    [4]
    Y.J.Xu, Y.Huang, B.Wu, et al. Chin. J. Chem. Eng., 23 (1),pp. 247-254
    [5]
    B.Wu, X.Zhang, Y.Xu, et al. J. Clean. Prod., 101 (2015),pp. 251-261
    [6]
    X.Wu, W.Y.Yao, J.Zhu, et al. Bioresour. Technol, 101 (11),pp. 4042-4047
    [7]
    T.Zhang, L.L.Liu, Z.L.Song, et al. Plos One, 8 (6),pp. 1-7
    [8]
    L.L.Liu, T.Zhang, H.W.Wan, et al. Energ. Convers. Manage, 97 (2015),pp. 132-139
    [9]
    L.W.Deng, H.N.Yang, G.J.Liu, et al. Appl. Energ, 134 (2014),pp. 349-355
    [10]
    K.J.Chae, A.Jang, S.K.Yim, et al. Bioresour. Technol., 99 (1),pp. 1-6
    [11]
    B.H.Gebreslassie, M.Slivinsky, B.L.Wang, et al. Comput. Chem. Eng., 50 (2013),pp. 71-91
    [12]
    B.H.Gebreslassie, R.Waymire, F.Q.You AIChE J., 59 (5),pp. 1599-1621
    [13]
    Q.Zhang, J.Gong, M.Skwarczek, et al. AIChE J., 60 (3),pp. 980-994
    [14]
    J.E.Santibanez-Aguilar, J.B.Gonzalez-Campos, J.M.Ponce-Ortega, et al. Ind. Eng. Chem. Res., 50 (14),pp. 8558-8570
    [15]
    A.Mian, A.V.Ensinas, F.Marechal Comput. Chem. Eng., 76 (2015),pp. 170-183
    [16]
    M.Martin, I.E.Grossmann AIChE J., 57 (12),pp. 3408-3428
    [17]
    M.Martin, I.E.Grossmann Appl. Energ, 135 (2014),pp. 108-114
    [18]
    B.Wang, B.H.Gebreslassie, F.Q.You Comput. Chem. Eng., 52 (2013),pp. 55-76
    [19]
    M.Gassner, F.Marechal Comput. Chem. Eng., 33 (3),pp. 769-781
    [20]
    H.Yu, Q.Wang, K.E.Ileleji, et al. Biomass Bioenergy, 46 (2012),pp. 773-784
    [21]
    H.Yu, Q.Wang, K.E.Ileleji, et al. Biomass Bioenergy, 46 (2012),pp. 785-792
    [22]
    J.Singh, B.S.Panesar, S.K.Sharma Biomass Bioenergy, 34 (4),pp. 483-488
    [23]
    A.Mshandete, L.Bjornsson, A.K.Kivaisi, et al. Renew. Energ, 31 (14),pp. 2385-2392
    [24]
    P.Tsapekos, P.G.Kougias, I.Angelidaki Bioresour. Technol., 182 (2015),pp. 329-335
    [25]
    A.J.Ward, P.J.Hobbs, P.J.Holliman, et al. Bioresour. Technol., 99 (17),pp. 7928-7940
    [26]
    H.Gannoun, N.Ben Othman, H.Bouallagui, et al. Ind. Eng. Chem. Res., 46 (21),pp. 6737-6743
    [27]
    G.D.Zupancic, M.Ros Renew. Energ, 28 (14),pp. 2255-2267
    [28]
    E.Ryckebosch, M.Drouillon, H.Veruaeren Biomass Bioenergy, 35 (5),pp. 1633-1645
    [29]
    A.Molino, F.Nanna, P.Iovane Fuel, 154 (2015),pp. 319-325
    [30]
    H.Nie, H.Jiang, D.W.Chong, et al. Energ. Fuel, 27 (6),pp. 3239-3245
    [31]
    J.Jung, Y.S.Jeong, U.Lee, et al. Ind. Eng. Chem. Res., 54 (15),pp. 3865-3878
    [32]
    L.Q.Duan, M.D.Zhao, Y.P.Yang Energ, 45 (1),pp. 107-116
    [33]
    Y.Zhao, Y.Huang, X.Zhang, et al. Phys. Chem. Chem. Phys., 17 (2015),pp. 3761-3767
    [34]
    R.Y.Yan, Z.X.Li, Y.Y.Diao, et al. AIChE J., 57 (9),pp. 2388-2396
    [35]
    X.Zhang, X.Zhang, H.Dong, et al. Energ. Environ. Sci., 5 (5),pp. 6668-6681
    [36]
    F.Karadas, M.Atilhan, S.Aparicio Energ. Fuel, 24 (2010),pp. 5817-5828
    [37]
    Z.Zhao, H.Dong, X.Zhang Chin. J. Chem. Eng., 20 (1),pp. 120-129
    [38]
    M.P.S.Santos, C.A.Grande, A.E.Rodrigues Ind. Eng. Chem. Res., 50 (2),pp. 974-985
    [39]
    C.A.Grande, A.E.Rodrigues Ind. Eng. Chem. Res., 46 (23),pp. 7844-7848
    [40]
    A.Arya, S.Divekar, R.Rawat, et al. Ind. Eng. Chem. Res., 54 (1),pp. 404-413
    [41]
    E.Kronbergs Ind. Crops Prod., 11 (2–3),pp. 211-216
    [42]
    P.Adapa, L.Tabil, G.Schoenau Biomass Bioenergy, 35 (1),pp. 549-561
    [43]
    A.Akbulut, R.Kose, A.Akbulut Int. J. Green Energy, 11 (2),pp. 113-128
    [44]
    X.P.Zhang, C.S.Li, C.Fu, et al. Ind. Eng. Chem. Res., 47 (4),pp. 1085-1094
    [45]
    X.Tian, X.Zhang, S.Zeng, et al. Chem. Eng. Technol., 34 (6),pp. 927-936
    [46]
    T.Zhang, Y.H.Yang, L.L.Liu, et al. Energ. Fuel, 28 (4),pp. 2490-2495
    [47]
    K.Deb, A.Pratap, S.Agarwal, et al. IEEE Trans. Evol. Compu, 6 (2),pp. 182-197
    [48]
    B.Wu, X.Zhang, D.Bao, et al. Bioresour. Technol., 206 (2016),pp. 155-163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (94) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return