2025 Vol. 10, No. 1

Short Communication
Abstract:
Although poly (lactic acid) (PLA) is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films, the barrier properties of PLA films are still insufficient for high-barrier packaging applications. In this study, oxygen scavenger hydroxyl-terminated polybutadiene (HTPB) and cobalt salt catalyst were incorporated into the PLA/poly (butylene adipate-co-terephthalate) (PLA/PBAT), followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films. The oxygen permeability coefficient of the composite film combined with 6 wt% oxygen scavenger and 0.4 wt% catalyst was decreased significantly from 377.00 cc·mil·m-2·day-1·0.1 MPa-1 to 0.98 cc·mil·m-2·day-1·0.1 MPa-1, showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film. Meanwhile, the degradation behavior of the composite film was also accelerated, exhibiting a mass loss of nearly 60% of the original mass after seven days of degradation in an alkaline environment, whereas PLA/PBAT composite film only showed a mass loss of 32%. This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior, which has great potential for high-demanding green chemistry packaging industries, including food, agricultural, and military packaging.
Review Article
Abstract:
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean, green, non-polluting, and sustainable hydrogen energy without depending on high-purity water in the face of the world's shortage of fossil energy. However, efficient seawater splitting is hindered by slow kinetics caused by the ultra- low conductivity and the presence of bacteria, microorganisms, and stray ions in seawater. Additionally, producing hydrogen on an industrial scale is challenging due to the high production cost. The present review addresses these challenges from the catalyst point of view, namely, that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting. From the ion transfer perspective, designing membranes can block harmful ions, improving the stability of seawater splitting. From the energy point of view, mixed seawater systems and self- powered systems also provide new and low-energy research systems for seawater splitting. Finally, ideas and directions for further research on direct seawater splitting in the future are pointed out, with the aim of achieving low-cost and high-efficiency hydrogen production.
Abstract:
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner. In this review, we investigate the development of industrial-waste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste. We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification, in which the active components, pore size, and phase structure can be altered. The review will discuss the potential of using industrial solid wastes, these modified materials, or synthesized materials from raw waste precursors for the removal of air pollutants, including SO2, NOx, Hg0, H2S, VOCs, and CO2. The challenges still need to be addressed to realize this potential and the prospects for future research fully. The suggestions for future directions include determining the optimal composition of these materials, calculating the real reaction rate and turnover frequency, developing effective treatment methods, and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
Abstract:
With the ongoing depletion of fossil fuels, energy and environmental issues have become increasingly critical, necessitating the search for effective solutions. Catalysis, being one of the hallmarks of modern industry, offers a promising avenue for researchers. However, the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars. Defect engineering, a commonly employed and effective approach to improve catalyst activity, has become a significant research focus in the catalysis field in recent years. Non-metal vacancies have received extensive attention due to their simple form. Consequently, exploration of metal vacancies has remained stagnant for a considerable period, resulting in a scarcity of comprehensive reviews on this topic. Therefore, based on the latest research findings, this paper summarizes and consolidates the construction strategies for metal vacancies, characterization techniques, and their roles in typical energy and environmental catalytic reactions. Additionally, it outlines potential challenges in the future, aiming to provide valuable references for researchers interested in investigating metal vacancies.
Abstract:
Point defect engineering endows catalysts with novel physical and chemical properties, elevating their electrocatalytic efficiency. The introduction of defects emerges as a promising strategy, effectively modifying the electronic structure of active sites. This optimization influences the adsorption energy of intermediates, thereby mitigating reaction energy barriers, altering paths, enhancing selectivity, and ultimately improving the catalytic efficiency of electrocatalysts. To elucidate the impact of defects on the electrocatalytic process, we comprehensively outline the roles of various point defects, their synthetic methodologies, and characterization techniques. Importantly, we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO2/O2/N2 reduction reactions by integrating mechanisms from diverse reactions. This underscores the pivotal role of point defects in enhancing catalytic performance. At last, the principal challenges and prospects associated with point defects in current electrocatalysts are proposed, emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
Research Paper
Abstract:
The high porosity and tunable chemical functionality of metal-organic frameworks (MOFs) make it a promising catalyst design platform. High-throughput screening of catalytic performance is feasible since the large MOF structure database is available. In this study, we report a machine learning model for high-throughput screening of MOF catalysts for the CO2 cycloaddition reaction. The descriptors for model training were judiciously chosen according to the reaction mechanism, which leads to high accuracy up to 97% for the 75% quantile of the training set as the classification criterion. The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding. 12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100 ℃ and 1 bar within one day using the model, and 239 potentially efficient catalysts were discovered. Among them, MOF-76(Y) achieved the top performance experimentally among reported MOFs, in good agreement with the prediction.
Abstract:
Blast furnace gas (BFG) is an important by-product energy for the iron and steel industry and has been widely used for heating or electricity generation. However, the undesirable contaminants in BFG (especially H2S) generate harmful environmental emissions. The desulfurization of BFG is urgent for integrated steel plants due to the stringent ultra-low emission standards. Compared with other desulfurization materials, zeolite-based adsorbents represent a viable option with low costs and long service life. In this study, an ammonia-induced CuO modified 13X adsorbent (NH3-CuO/13X) was prepared for H2S removal from simulated BFG at low temperature. The XRD, H2-TPR and TEM analysis proved that smaller CuO particles were formed and the dispersion of Cu on the surface of 13X zeolite was improved via the induction of ammonia. Evaluation on H2S adsorption performance of the adsorbent was carried out using simulated BFG, and the results showed that NH3-CuO/13X-3 has better breakthrough sulfur capacity, which was more than twice the sulfur capacity of CuO/13X. It is proposed that the enhanced desulfurization performance of NH3-CuO/13X is attributed to an abundant pore of 13X, and combined action of 13X and CuO. This work provided an effective way to improve the sulfur capacity of zeolite-based adsorbents via impregnation method by ammonia induction.
Abstract:
Protonic solid oxide electrolysis cells (P-SOECs) are a promising technology for water electrolysis to produce green hydrogen. However, there are still challenges related key materials and anode/electrolyte interface. P-SOECs with Zr-rich electrolyte, called Zr-rich side P-SOECs, possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage, thus the inferior performances. In this study, an efficient functional interlayer Ba0.95La0.05Fe0.8Zn0.2O (BLFZ) in-between the anode and the electrolyte is developed. The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact, boost anode reaction kinetics, and increase proton injection into electrolyte. As a result, the P-SOEC yields high current density of 0.83 A cm-2 at 600 ℃ in 1.3 V among all the reported Zr-rich side cells. This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
Abstract:
Developing a cost-effective and environmentally friendly process for the production of valuable chemicals from abundant herbal biomass receives great attentions in recent years. Herein, taking advantage of the “lignin first” strategy, corn straw is converted to valuable chemicals including lignin monomers, furfural and 5-methoxymethylfurfural via a two steps process. The key of this research lies in the development of a green and low-cost catalytic process utilizing magnetic Raney Ni catalyst and high boiling point ethylene glycol. The utilization of neat ethylene glycol as the sole slovent under atmospheric conditions obviates the need for additional additives, thereby facilitating the entire process to be conducted in glass flasks and rendering it highly convenient for scaling up. In the initial step, depolymerization of corn straw lignin resulted in a monomer yield of 18.1 wt%. Subsequently, in a dimethyl carbonate system, the carbohydrate component underwent complete conversion in a one-pot process, yielding furfural and 5-methoxymethylfurfural as the primary products with an impressive yield of 47.7%.
Abstract:
Hard carbon (HC) is widely used in sodium-ion batteries (SIBs), but its performance has always been limited by low initial Coulombic efficiency (ICE) and cycling stability. Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed by HC anode. Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption. Here, we propose 1,2-dihydroxybenzene Na salt (NaDB) as a cathode compensation agent with high specific capacity (347.9 mAh g-1), lower desodiation potential (2.4-2.8 V) and high utilization (99%). Meanwhile, its byproduct could functionalize HC with more CO groups and promote its reversible capacity. Consequently, the presodiation hard carbon (pHC) anode exhibits highly reversible capacity of 204.7 mAh g-1 with 98% retention at 5 C rate over 1000 cycles. Moreover, with 5 wt% NaDB initially coated on the Na3V2(PO4)3 (NVP) cathode, the capacity retention of NVP + NaDBHC cell could increase from 22% to 89% after 1000 cycles at 1 C rate. This work provides a new avenue to improve reversible capacity and cycling performance of SIBs through designing functional cathode compensation agent.
Abstract:
High-energy-density lithium (Li)-air cells have been considered a promising energy-storage system, but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development. To address these above issues, solid-state Li-air batteries have been widely developed. However, many commonly-used solid electrolytes generally face huge interface impedance in Li-air cells and also show poor stability towards ambient air/Li electrodes. Herein, we fabricate a differentiating surface-regulated ceramic-based composite electrolyte (DSCCE) by constructing disparately LiI-containing polymethyl methacrylate (PMMA) coating and Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) layer on both sides of Li1.5Al0.5Ge1.5(PO4)3 (LAGP). The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li-air system. Additionally, the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes. Moreover, Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniform and compact composite framework. As a result, the DSCCE-based Li-air batteries possess high capacity/low voltage polarization (11,836 mA h g-1/1.45 V under 500 mA g-1), good rate performance (capacity ratio under 1000 mA g-1/250 mA g-1 is 68.2%) and long-term stable cell operation (∼300 cycles at 750 mA g-1 with 750 mAh g-1) in ambient air.
Abstract:
CO2 photoreduction into carbon-based chemicals has been considered as an appropriate way to alleviate the energy issue and greenhouse effect. Herein, the 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin cobalt (II) (CoTCPP) has been integrated with BiOBr microspheres and formed the CoTCPP/BiOBr composite. The as-prepared CoTCPP/BiOBr-2 composite shows optimized photocatalytic performance for CO2 conversion into CO and CH4 upon irradiation with 300 W Xe lamp, which is 2.03 and 2.58 times compared to that of BiOBr, respectively. The introduced CoTCPP significantly enhanced light absorption properties, promoted rapid separation of photogenerated carriers and boosted the chemisorption of CO2 molecules. The metal Co2+ at the center of the porphyrin molecules also acts as adsorption center for CO2 molecules, accelerating the CO2 conversion into CO and CH4. The possible mechanism of CO2 photoreduction was explored by in-situ FT-IR spectra. This work offers a new possibility for the preparation of advanced photocatalysts.
Abstract:
Mixed matrix membranes (MMMs) have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers. However, achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge, due to the difficulty of achieving an optimal match between polymers and fillers. In this study, we incorporate a porous carbon-based zinc oxide composite (C@ZnO) into high-permeability polymers of intrinsic microporosity (PIMs) to fabricate MMMs. The dipole-dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility, mitigating the formation of non-selective voids in the resulting MMMs. Concurrently, C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs. As a result, the CO2 permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer, while the CO2/N2 and CO2/CH4 selectivity reached 21.5 and 14.4, respectively, substantially surpassing the 2008 Robeson upper bound. Additionally, molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO2 affinity of C@ZnO. In summary, we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
Abstract:
Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes (EAOPs) due to its high performance and sustainable synthesis. Herein, we illustrated the morphological fates of waste leaf-derived graphitic carbon (WLGC) produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H2O2 electrochemical generation and organic pollutant degradation, discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species (ROS) generation. Under the optimum temperature of 800 ℃, the WLGC exhibited a H2O2 selectivity of 94.2% and tetracycline removal of 99.3% within 60 min. Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H2O2 generation. While pyridinic N and thiophene S were the main active sites responsible for ·OH generation, N vacancies were the active sites to produce 1O2 from O2. The performance of the novel cathode for tetracycline degradation remains well under a wide pH range (3-11), maintaining excellent stability in 10 cycles. It is also industrially applicable, achieving satisfactory performance treating in real water matrices. This system facilitates both radical and non-radical degradation, offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
Abstract:
Photocatalysis has emerged as an effective approach to sustainably convert biomass into value-added products. CoSe2 is a promising non-precious, efficient cocatalyst for photooxidation, which can facilitate the separation of photogenerated electron-holes, increase the reaction rates, and enhance photocatalytic efficiency. In this work, we synthesized a stable and efficient photocatalysis system of CoSe2/g-C3N4 through attaching CoSe2 on g-C3N4 sheets, with a yield of 50.12% for the selective photooxidation of xylose to xylonic acid. Under light illumination, the photogenerated electrons were prone to migrating from g-C3N4 to CoSe2 due to the higher work function of CoSe2, resulting in the accelerated separation of photogenerated electron-holes and the promoted photooxidation. Herein, this study reveals the unique function of CoSe2, which can significantly promote oxygen adsorption, work as an electron sink and accelerate the generation of ·O2-, thereby improving the selectivity toward xylonic acid over other by-products. This work provides useful insights into the design of selective photocatalysts by engineering g-C3N4 for biomass high-value utilization.