2022 Vol. 7, No. 1

Research highlight
Abstract:
When I read the paper "Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries" from Prof. Jianmin Ma's group, which was published in Science Bulletin (doi.org/10.1016/j.scib.2020.09.018), I felt excited as presented a multi-factor principle for applying potassium perfluorinated sulfonates to suppress the dendrite growth and protect the cathode from the viewpoint of electrolyte additives. The effects of these additives are revealed through experimental results, molecular dynamics simulations and first-principle calculations. Specifically, it involves the influence of additives on Li+ solvation structure, solid electrolyte interphase (SEI), Li growth and nucleation. Following the guidance of the multi-factor principle, every part of the additive molecule should be utilized to regulate electrolytes. This multifactor principle for electrolyte additive molecule design (EAMD) offers a unique insight on understanding the electrochemical behavior of iontype electrolyte additives on both the Li metal anode and high-voltage cathode. In these regards, I would be delighted to write a highlight for this innovative work and, hopefully, it may raise more interest in the areas of electrolyte additives.
Review articles
Abstract:
In recent years, an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area, tunable porosity, and excellent thermal and chemical stabilities. This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples. Then, the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis, including catalysis of the redox reactions, addition reactions, esterification reactions, Knoevenagel condensations, and hydrogenation-dehydrogenation reactions, has been elaborately discussed. Finally, we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.
Abstract:
Zn-air batteries (ZABs), especially the secondary batteries, have engrossed a great interest because of its high specific energy, economical and high safety. However, due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, the practical application of rechargeable ZABs is seriously hindered. In the effort of developing high active, stable and cost-effective electrocatalysts, transition metal nitrides (TMNs) have been regarded as the candidates due to their high conductivity, strong corrosion-resistance, and bifunctional catalytic performance. In this paper, the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis, chemical/physical characterization, and performance validation/optimization. The surface/interface nanoengineering strategies such as defect engineering, support binding, heteroatom introduction, crystal plane orientation, interface construction and small size effect, the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies, composition, electrical conductivity, specific surface area, chemical stability and corrosion resistance. The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated, and numerous research guidelines to solve these problems are put forward for facilitating further research and development.
Research papers
Abstract:
Volumetric solar evaporations by using light-absorbing nanoparticles suspended in liquids (nanofluids) as solar absorbers have been widely regarded as one of the promising solutions for clean water production because of its high efficiency and low capital cost compared to traditional solar distillation systems. Nevertheless, previous solar evaporation systems usually required highly concentrated solar irradiation and high capital cost, limiting the practical application on a large scale. Herein, for the first time in this work, polydopamine (PDA)-capped nano Fe3O4 (Fe3O4@PDA) nanofluids were used as solar absorbers in a volumetric system for solar evaporation. The introduction of organic PDA to nano Fe3O4 highly contributed to the high light-absorbing capacity of over 85% in wide ranges of 200-2400 nm because of the existence of numerous carbon bonds and pi (π) bonds in PDA. As a result, high evaporation efficiency of 69.93% under low irradiation of 1.0 kW m-2 was achieved. Compared to other nanofluids, Fe3O4@PDA nanofluids also provided an advantage in high unit evaporation rates. Moreover, Fe3O4@PDA nanofluids showed excellent reusability and recyclability owing to the preassembled nano Fe3O4, which significantly reduced the material consumptions. These results demonstrated that the Fe3O4@PDA nanofluids held great promising application in highly efficient solar evaporation.
Abstract:
eteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors, hard/soft templates, and heteroatom-containing agents. Herein, we report a facile synthesis of N and O co-doped meso/micro-porous carbon (NOMC) by template-free carbonization of a small-molecule precursor in a semi-closed system. The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield. The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature. NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with > 85% conversion in aqueous solution, which is much higher than that of the control sample obtained in tube furnace (21% conversion), mainly due to their high N content, high percentage of pyridinic N, and large surface area. The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation. The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of > 99%.
Abstract:
SrLi2Ti6O14 (SLTO) coated with different amount of ZrO2 was successfully prepared. The as-obtained composites are stacked by a series of particles with a pure phase structure and a good crystallinity. Furthermore, ZrO2 coating not only enhances the structural stability of the materials but also facilitates the diffusion of lithium through the SEI film. As a result, the redox polarization was reduced, and the reversibility of the electrochemical reaction was enhanced. Particularly, SLTO-ZrO2-2 sample delivers a high initial lithiation capacity of 283.6 mA h g-1, and the values maintain at 251.7, 228.0, 207.4, 175.3, and 147.7 mA h g-1 at the current densities of 0.13, 0.26, 0.54, 1.31, and 2.62 A g-1, respectively. Our experiment also confirmed that SLTO materials coated with ZrO2 are suitable for high power density applications, and the lithiation specific energy efficiency of SLTO-ZrO2-2 is 200% as high as that of pure SLTO at a power density of 1257 W kg-1.
Abstract:
Cr(VI)-based compounds pollution have attracted global concern due to serious harm to humans and environment. Hence, it is crucial to exploit an effective technique to eliminate Cr(VI) in water. Herein, we in-situ grown BiOI on graphitic carbon nitride to prepare the BiOI/g-C3N4 (BCN) direct Z-scheme heterojunction by solid phase engineering method at room temperature. Experimental result shown the photocatalytic activity of pure BiOI were obviously enhanced by constructing Z-scheme BCN heterostructure, and BCN-3 heterostructure exhibited the optimal photocatalytic degradation of RhB with 98% yield for 2.5 h and reduction of Cr(VI) with more than 99% yield for 1.5 h at pH=2. Stability test shows BCN-3 still kept more than 98% reduction efficiency after 6 cycles. In addition, we also studied the reduction mechanism that shown the ·O2- radicals essentially helped to reduce the Cr(VI) in aqueous solution under illumination, verified the direct Z-scheme charge transfer path by X-ray photoelectron spectroscopy (XPS) and the free radical trapping experiment. The work open a new way for rationally designing photocatalyst heterostructure to reduce Cr(VI) to Cr(III).
Abstract:
Judiciously engineering the electrocatalysts is attractive and challenging to exploit materials with high electrocatalytic performance for hydrogen evolution reaction. Herein, we successfully perform the interface engineering by alternately depositing Co-P and Ni-Fe-P films on nickel foam, via facile electroless plating and de-alloying process. This work shows that there is a significant effect of de-alloying process on alloy growth. The electronic structure of layered alloys is improved by interface engineering. The multilayer strategy significantly promotes the charge transfer. Importantly, the Co-P/Ni-Fe-P/NF electrode fabricated by interface engineering exhibits excellent electrocatalytic hydrogen evolution activity with an overpotential of 43.4 mV at 10 mA cm-2 and long-term durability for 72 h in alkaline medium (1 mol L-1 KOH). The innovative strategy of this work may aid further development of commercial electrocatalysts.
Abstract:
Graphene is a two-dimensional material that can be folded into diverse and yet interesting nanostructures like macro-scale paper origami. Folding of graphene not only makes different morphological configurations but also modifies their mechanical and thermal properties. Inspired by paper origami, herein we studied systemically the effects of creases, where sp2 to sp3 bond transformation occurs, on the thermal properties of graphene origami using molecular dynamics (MD) simulations. Our MD simulation results show that tensile strain reduces (not increases) the interfacial thermal resistance owing to the presence of the crease. This unusual phenomenon is explained by the micro-heat flux migration and stress distribution. Our findings on the graphene origami enable the design of the next-generation thermal management devices and flexible electronics with tuneable properties.
Abstract:
Asymmetric behaviors of capacitance and charging dynamics in the cathode and anode are general for nanoporous supercapacitors. Understanding this behavior is essential for the optimal design of supercapacitors. Herein, we perform constant-potential molecular dynamics simulations to reveal asymmetric features of porous supercapacitors and their effects on capacitance and charging dynamics. Our simulations show that, counterintuitively, charging dynamics can be fast in pores providing slow ion diffusion and vice versa. Unlike electrodes with singlesize pores, multi-pore electrodes show overcharging and accelerated co-ion desorption, which can be attributed to the subtle interplay between the dynamics and charging mechanisms. We find that capacitance and charging dynamics correlate with how the ions respond to an applied cell voltage in the cathode and anode. We demonstrate that symmetrizing this response can help boost power density, which may find practical applications in supercapacitor optimization.
Abstract:
In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu:Mg:Al molar ratio of 3:3:2, NaOH:Na2CO3 molar ratio of 2:1, and calcination temperature of 600℃. CuMgAl-LDO is a characteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach > 98% over a wide range of initial SMD concentrations (5-20 mg L-1). The best removal efficiency of 99.49% was achieved within 120 min using 10 mg L-1 SMD, 0.3 g L-1 CuMgAl-LDO, and 0.7 mmol L-1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L-1), which is below drinking water quality standard of 1.3 mg L-1 permittable in the U.S. Radical scavenging experiments suggest that SO4·- is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)-Cu(III)-Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants.
Abstract:
To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles, we synthesized a superstructure of Si@Co- NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles. The Si@Co-NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell, and there is void space between the core and the shell. When using as anode material for LIBs, Si@Co-NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g-1 and a coulombic efficiency of 100.1% at 1000 mA g-1 after 3000 cycles, and the capacity loss rate is 0.022% per cycle only. The excellent electrochemical property of Si@Co-NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles, and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell. Also, the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix. This work shows that, through designing a superstructure for the anode materials, we can synergistically reduce the work function and introduce the confinement effect, thus significantly enhancing the anode materials' electrochemical performance in LIBs.
Abstract:
An efficient method for prediction in the capture of SO2 from flue gas by imidazolium ionic liquids was reported, where the concentration of SO2 is 2000 ppm. On the basis of quantitative calculations through a combination of Langmuir simulation, theoretical calculation and quantum chemical method, SO2 absorption and desorption performance from flue gas by twelve kinds of imidazolium ionic liquids with different anions were designed and predicted. Then, among them, five kinds of imidazolium ionic liquids were chosen and prepared to investigate their behavior of SO2 absorption capacity, desorption residue, and available absorption capacity. The results indicated that the experimental values were in good agreement with the predicted values. Thus, an ideal ionic liquid[Emim] [Tetz] was obtained through the predictive method for the capture of SO2 of 2000 ppm, which showed high available absorption capacity of 0.24 g SO2 per g ionic liquid and excellent reversibility.
Abstract:
In this work, a series of novel proton-gradient-transfer acid complexes (PGTACs) were developed. Their physicochemical properties, including thermal stability, melting point, and Hammett acidity, were measured. The effects of catalyst loading, reaction temperature, and substrate expansion on the catalytic performance were systematically studied. It is found that the combination of bidentate N-heterocycle and H2SO4 (1:2 M ratio) could form simultaneously N-H covalent bond and N…H hydrogen bond, which makes the PGTACs excellent catalysts integrate the advantages of strong acids (high catalytic activity) and ionic liquids (phase separation) in the esterification reaction. Moreover, these PGTACs can be reused by convenient phase separation without obvious diminution of catalytic activity. It is concluded that these PGTACs are potential alternative candidates for esterification reaction in the process of industrial catalysis.
Abstract:
Hydrogen is an indispensable energy carrier for the sustainable development of human society. Nevertheless, its storage, transportation, and in situ generation still face significant challenges. Methanol can be used as an intermediate carrier for hydrogen supplies, providing hydrogen energy through instant methanol conversion. In this study, a sorption-enhanced, chemical-looping, oxidative steam methanol-reforming (SECL-OSRM) process is proposed using CuO-MgO for the on-board hydrogen supply, which could be a promising method for safe and efficient hydrogen production. Aspen Plus software was used for feasibility verification and parameter optimization of the SECL-OSRM process. The effects of CuO/CH3OH, MgO/CH3OH, and H2O/CH3OH mole ratios and of temperature on H2 production rate, H utilization efficiency, CH3OH conversion, CO concentration, and system heat balance are discussed thoroughly. The results indicate that the system can be operated in autothermal conditions with high-purity hydrogen (99.50 vol%) and ultra-low-concentration CO (< 50 ppm) generation, which confirms the possibility of integrating low-temperature proton-exchange membrane fuel cells (LT-PEFMCs) with the SECL-OSRM process. The simulation results indicate that the CO can be modulated in a lower concentration by reducing the temperature and by improving the H2O/CH3OH and MgO/CH3OH mole ratios.
Abstract:
Although TiO2 nanotubes is a promising electrode as supercapacitors due to its high energy density, easy synthesis and chemical stability, there are draw backs such as low conductivity and capacitance. Many studies concentrated on improving its electrochemical performance itself but little attention was payed to the reason of capacitance differences caused by its different crystal structures. Herein, we prepare amorphous and anatase TiO2 nanotubes and hydrogenated them by a simple electrochemical hydrogenation method to improve their conductivity and capacitance. And then study and compare their morphology and structure differences by SEM, TEM, XRD and BET. The results show that the pore size distribution, internal structure order and internal carrier concentration are the main reasons for their electrochemical performance differences. The microporous structure less than 2 nm in amorphous nanotubes act as a trap of electrolyte ions at current density larger than 0.1 mA cm-2, leading to small charge and discharge capacitance. The long-range ordered crystal structure of anatase is more favorable for the orderly diffusion of carriers, reducing the inelastic scattering of carrier diffusion process and the electron hole-complexing probability, making anatase nanotubes exhibit higher coulomb efficiency and cycle stability than that of amorphous ones.
Abstract:
In this paper, sulfonic groups functionalized annealed bio-based carbon microspheres loaded polytetrafluoroethylene (A-BCMSs-SO3H@PTFE) fibers with high activity, high stability, and easy regeneration were successfully fabricated by a simple method using low-cost raw materials. The characterization results showed that the annealed biomass carbon microspheres derived from waste Camellia oleifera shells were evenly distributed on the polytetrafluoroethylene fibers and the sulfonic groups can be successfully loaded on the surface of annealed biomass carbon microspheres by room temperature sulfonation. Subsequently, the as-prepared A-BCMSs-SO3H@PTFE fibers were applied to the acidcatalyzed synthesis of liquid biofuel 5-ethoxymethylfurfural. The catalytic experiment results indicated that the annealing temperature and time during catalyst preparation have a significant effect on the activity and selectivity of A-BCMSs-SO3H@PTFE fibers. The results of catalytic reaction kinetics showed that the yield of 5-ethoxymethylfurfural can reach more than 60% after 72 h of acid-catalyzed reaction. The stability test showed that the as-prepared A-BCMSs-SO3H@PTFE fibers still maintained a stable acid catalytic activity after four recycles.
Abstract:
The present work, in which cellulose isolated from formic acid fractionation (FAC) is decorated with polyetherimide (PEI) to attain highly efficient cellulose-derived PdAgbimetallic catalyst (PdAg-PEI-FAC), has been investigated, and the catalyst properties are characterized by XRD, XPS, BET, ICP-AES and HAADF-STEM. The as-obtained Pd3.75Ag3.75-PEI-FAC exhibits excellent catalytic performance for H2 evolution from a sodium formate-free formic acid (FA) aqueous medium at ambient temperature and the turnover frequency (TOF) reaches a high value of 2875 h-1, which is superior to most of the previously reported Pd-based heterogeneous catalysts supported on a carbon matrix in the literature. The remarkable catalytic activities of PdAg-PEI-FAC result from high dispersion Pd and synergistic effects between the PdAg bimetallic system. Furthermore, the amide (-NH) group in PEI coated on cellulose acting as a proton scavenger efficiently improves the catalytic property of catalyst. In addition, the critical factors affecting H2 release, such as FA concentration, reaction temperature, PdAg compositions and support matrix type, are also evaluated. Based on the experimental results, the probable three-step mechanism of H2 evolution from FA over Pd3.75Ag3.75-PEI-FAC is proposed. In the end, the activation energy (Ea) of Pd3.75Ag3.75-PEI-FAC catalyst is calculated to 53.97 kJ mol-1, and this catalyst shows unique robustness and satisfactory re-usability with no loss of catalytic activity after five recycles. The findings in this work provide a novel routine from lignocellulose fractionation towards cellulose-derived catalyst for H2 evolution.