2017 Vol. 2, No. 1

Cover info & Content
Editorial
Abstract:
Commentary
Abstract:
Review article
Abstract:
The fast growing demands and increasing awareness for the environment, PV systems are being rapidly installed for numerous applications. However, one of the important challenges in utilizing a PV source is the maximum power harnessing using various maximum power point tracking techniques available. With the large number of MPPT techniques, each having some merits and demerits, confusion is always there for their proper selection. Discussion on various proposed procedures for maximum power point tracking of photovoltaic array has been done. Based on different parameters analysis of MPPT techniques is carried out. This assessment will serve as a suitable reference for selection, understanding different ways and means of MPPT.
Feature article
Abstract:
Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. Like the hydro-energy, wind energy, and tidal energy, light energy as a renewable, clean, and widespread energy can be easily harvested. In microcosmic scale, some specific proteins and enzymes in green plants and bacteria play an important role in light harvest and energy conversion via photosynthesis. Inspired by the biomimetic sparks, these bioactive macromolecules and some artificially synthetic unites have been integrated together to improve the light-harvesting, and enhance their utilization efficiency. In this feature article, we primarily discuss that how to create the bio-inorganic hybrid energy converted system via biomimetic assembly strategy and artificially achieve the transformation from light into bioenergy, meanwhile highlight some promising works.
Research paper
Abstract:
Searching low cost and non-precious metal catalysts for high-performance oxygen reduction reaction is highly desired. Herein, Co nanoparticles embedded in nitrogen-doped carbon (Co/N–C) nanotubes with internal void space are successfully synthesized by space-confined pyrolysis, which effectively improve the cobalt loading content and restrict the encapsulated particles down to nanometer. Different from the typical conformal carbon encapsulation, the resulting Co/N–C nanotubes possess more cobalt nanoparticles embedded in the nanotubes, which can provide more coupling sites and active sites in the oxygen reduction reaction (ORR). Moreover, the one-dimensional and porous structure provides a high surface area and a fast electron transfer pathway for the ORR. And the Co/N–C electrode presents excellent electrocatalytic ORR activity in terms of low onset potential (30 mV lower than that of Pt/C), small Tafel slop (45.5 mV dec −1) and good durability (88.5% retention after 10,000 s).
Abstract:
The adsorption of uranyl on hydroxylated α-SiO2(001) in the presence of a series of anionic ligands, i.e. OH, , , , , CH3COO (Ac), C6H5COO (), C6H5O (PhO), was studied by the periodic density functional theory (DFT) implemented in the Vienna ab initio simulation package (VASP). For the ligands other than OH and PhO, only the bidentate coordination modes to the uranyl were considered. The excess charge effect of a charged system was first evaluated by constructing models with net charge as is or neutralized by creating defect at the bottom of silica, and the results show that a neutralized model, even with defects, is more realistic than the charged ones. All uranyl species prefer to bind with the deprotonated site (O) rather than the protonated one (OH), which suggests that the increase of pH, which leads to the deprotonation of the surface, may enhance the uranyl adsorption. On the other hand, the anionic ligands, which are formed at higher pH, have negative effects. The weaker acidic ligands, such as H2CO3, H3PO4 and H2O, whose speciation in solutions is sensitive to the fluctuation of pH, have more complex effect on the uranyl adsorption than strong acids or bases. Humic substances may coordinate with uranyl through carboxyl and phenolic groups, with the carboxyl group bound stronger. The ternary complexes with one bidentate (or monodentate) anion and one (or two) H2O as ligands, which leads to the uranyl penta-coordinated in its equatorial plane, are more favorable than other configurations when bound to the same anionic ligand. Both the charged nature and the coordination behavior of an anionic ligand are relevant to its ability to influence the adsorption of uranyl on the mineral surface. In addition, the uranyl species adsorbed at the surface functionalized by anionic ligands were also addressed, and the functionalized surfaces have weaker interaction with hydrated uranyl dication.
Abstract:
With the rapid development of consumer electronics and electric vehicles (EV), a large number of spent lithium-ion batteries (LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi1/3Co1/3Mn1/3O2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing, leaching and impurity removing, the LiNi1/3Co1/3Mn1/3O2 (selected as an example of LiNiCoMnO2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the fresh-synthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNiCoMnO2 cathode material with low secondary pollution.
Abstract:
In this work, with the purpose to explore the coordination chemistry of calcium complexes which could work as a partial model of manganese–calcium cluster, a spectrophotometric study to evaluate the stability of the complexes: Calcium(II)-1,2-ethylendiamine, Calcium(II)-1,3-propanediamine and Calcium(II)-1,4-butanediamine in acetonitrile, were carried on. By processing the spectrophotometric data with the HypSpec program allows the determination of the formation constants. The logarithmic values of the formation constants obtained for Calcium(II)-1,2-ethylendiamine, Calcium(II)-1,3-propanediamine and Calcium(II)-1,4-butanediamine were log β110 = 4.69, log β110 = 5.25 and log β110 = 4.072, respectively.
Abstract:
Biomimetics provides us a new perspective to understand complex biological process and strategy to fabricate functional materials. However, a great challenge still remains to design and fabricate biomimetic materials using a facile but effective method. Here, we develop a biomimetic light harvesting architecture based on one-step co-assembly of amphiphilic amino acid and porphyrin. Amphiphilic amino acid can self-assemble into nanofibers via π-stacking and hydrogen binding interactions. Negatively charged porphyrin adsorbs on the surface of the assembled nanofibers through electrostatic force, and the nanofibers further organize into porous urchin-like microspheres induced presumably by hydrophobic interaction. The assembled amphiphilic amino acid nanofibers work as a template to tune the organization of porphyrin with an architecture principle analogous to natural light harvesting complex. The co-assembled microspheres exhibit enhanced light capture due to the light reflection in the porous structure. Reaction center (platinum nanoparticles) can be effectively coupled with the light harvesting microspheres via photoreduction. After visible light illumination, hydrogen evolution occurs on the hybrid microspheres.