Turn off MathJax
Article Contents
Longyu Wen, Zhiqiang Li, Nina Chen, Jiangyong Yuan, Yuelun Li, Lei Jiang, Hua Wang, Kongzhai Li. Enhanced coal tar-resistance of LaFeO3-based oxygen carrier for chemical looping reforming of coke oven gas. Green Energy&Environment. doi: 10.1016/j.gee.2026.01.004
Citation: Longyu Wen, Zhiqiang Li, Nina Chen, Jiangyong Yuan, Yuelun Li, Lei Jiang, Hua Wang, Kongzhai Li. Enhanced coal tar-resistance of LaFeO3-based oxygen carrier for chemical looping reforming of coke oven gas. Green Energy&Environment. doi: 10.1016/j.gee.2026.01.004

Enhanced coal tar-resistance of LaFeO3-based oxygen carrier for chemical looping reforming of coke oven gas

doi: 10.1016/j.gee.2026.01.004
  • Chemical looping reforming of coke oven gas (COG) is a promising technology for producing cheap hydrogen, but the presence of coal tar with relatively high concentration presents an enormous challenge for the design of oxygen carriers. In the present work, the effect of naphthalene (a coal tar model compound) on the activity and structure stability of LaFeO3-based perovskite oxygen carriers for chemical looping reforming of COG were investigated. We found that the presence of naphthalene would inhibit the methane conversion and lead to serious carbon deposit on oxygen carriers, thus reducing the structure stability during the redox cycling. In response to the aforementioned findings, a series of La1-xYxFe0.93Ni0.07O3-λ perovskite oxygen carriers were designed based on co-doping of A and B sites strategy. The presence of Ni2+ at B-site can improve the capacity of oxygen carrier for methane activation, and the Y3+ substitution at A-site may enhance the activity of lattice oxygen via regulating the Fe-O bond-length. With a suitable content of Ni and Y, the La0.9Y0.1Fe0.93Ni0.07O3-λ oxygen carrier shows superior performance for chemical looping reforming of COG, with the CH4 conversion higher than 99% and excellent stability during long-term redox cycles in the presence of 400 ppm naphthalene at 800 °C. This work may provide a viable strategy for developing robust perovskite oxygen carriers for the chemical looping reforming of fuels with relativity high content of impurities.

     

  • loading
  • [1]
    D. Zhang, Green Energy Environ. 8 (2023) 945-947.
    [2]
    H. Peng, Z. Di, P. Gong, F. Yang, F. Cheng, Green Energy Environ. 8 (2023) 338-350.
    [3]
    L. Ma, Y. Qiu, M. Li, D. Cui, S. Zhang, D. Zeng, R. Xiao, Green Energy Environ. 6 (2020) 875-883.
    [4]
    D. Xiang, Y. Zhou, Appl. Energy 229 (2018) 1024-1034.
    [5]
    C. Wang, C. Liu, W. Fu, Z. Bao, J. Zhang, W. Ding, K. Chou, Q. Li, Catal. Today 263 (2016) 46-51.
    [6]
    H. Xie, J. Zhang, Q. Yu, Z. Zuo, J. Liu, Q. Qin, Energy Fuels 30 (2016) 2336-2344.
    [7]
    Q. Yi, M. Gong, Y. Huang, J. Feng, Y. Hao, J. Zhang, W. Li, Energy 112 (2016) 618-628.
    [8]
    J. Yang, X. Wang, L. Li, K. Shen, X. Lu, W. Ding, Appl. Catal. B-Environ. 96 (2010) 232-237.
    [9]
    B. Yue, X. Wang, X. Ai, J. Yang, L. Li, X. Lu, W. Ding, Fuel Process. Technol. 91 (2010) 1098-1104.
    [10]
    K.Y. Koo, J.H. Lee, U.H. Jung, S.H. Kim, W.L. Yoon, Fuel 153 (2015) 303-309.
    [11]
    Z. Ma, X. Wei, G. Liu, F. Liu, Z. Zong, Fuel 292 (2021) 119954.
    [12]
    L.T. Do, H. Nguyen-Phu, N.N. Pham, D.H. Jeong, E.W. Shin, Catalysts 12 (2022) 1542.
    [13]
    Y. Wang, H. Yang, X. Tu, Energy Conv. Manag. 187 (2019) 593-604.
    [14]
    K. Taira, K. Nakao, K. Suzuki, Int. J. Hydrog. Energy 45 (2020) 33248-33259.
    [15]
    H. Cheng, Y. Zhang, X. Lu, W. Ding, Q. Li, Energy Fuels 23 (2009) 414-421.
    [16]
    M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, Y. Katayama, Fuel 85 (2006) 143-149.
    [17]
    H. Cheng, X. Lu, W. Ding, Q. Zhong, New and Advanced Materials, Pts 1 and 2 197-198 (2011) 711-714.
    [18]
    J. Deng, Y. Feng, C. Li, Z. Yuan, R. Shang, S. Yuan, Appl. Energy 367 (2024) 123354.
    [19]
    J. Chen, Y. Liu, Z. Chen, J. Yue, Y. Tian, C. Zheng, J. Zhang, Environ. Sci. Technol. 7 (2024) 3540-3551.
    [20]
    Y. Zheng, L. Zhao, Y. Wang, Y. Wang, H. Wang, Y. Wang, L. Jiang, X. Zhu, Y. Wei, K. Li, Fuel Process. Technol. 215 (2021) 106744.
    [21]
    K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, Int. J. Hydrog. Energy 39 (2014) 3243-3252.
    [22]
    M. Luo, Y. Yi, S. Wang, Z. Wang, M. Du, J. Pan, Q. Wang, Renew. Sust. Energ. Rev. 81 (2018) 3186-3214.
    [23]
    K. Yang, Z. Gu, Y. Long, S. Lin, C. Lu, X. Zhu, H. Wang, K. Li, Green Energy Environ. 6 (2021) 678-692.
    [24]
    Y. Long, K. Yang, Z. Gu, S. Lin, D. Li, X. Zhu, H. Wang, K. Li, Appl. Catal. B-Environ. 301 (2022) 120778.
    [25]
    D. Xiang, W. Huang, P. Huang, Energy 165 (2018) 1024-1033.
    [26]
    X. Zhang, C. Pei, X. Chang, S. Chen, R. Liu, Z. Zhao, R. Mu, J. Gong, J. Am. Chem. Soc. 142 (2020) 11540-11549.
    [27]
    O. Mihai, De Chen, A. Holmen, Ind. Eng. Chem. Res. 50 (2011) 2613-2621.
    [28]
    X. Dai, J. Cheng, Z. Li, M. Liu, Y. Ma, X. Zhang, Chem. Eng. Sci. 153 (2016) 236-245.
    [29]
    X. Xia, W. Chang, S. Cheng, C. Huang, Y. Hu, W. Xu, L. Zhang, B. Jiang, Z. Sun, Y. Zhu, X. Wang, ACS Catal. 12 (2022) 7326-7335.
    [30]
    Y. Kim, H.S. Kim, D. Kang, M. Kim, J.W. Lee, Chem. Eng. J. 468 (2023) 143662.
    [31]
    R. Zhang, G. Liu, C. Huo, J. Liu, B. Zhang, B. Yang, X. Tian, Z. Wu, ACS Catal. 14 (2024) 7771-7787.
    [32]
    K. Zhao, F. He, Z. Huang, G. Wei, A. Zheng, H. Li, Z. Zhao, Appl. Energy 168 (2016) 193-203.
    [33]
    Q. Cheng, X. Yao, L. Ou, Z. Hu, L. Zheng, G. Li, N. Morlanes, J.L. Cerrillo, P. Castano, X. Li, J. Gascon, Y. Han, J. Am. Chem. Soc. 145 (2023) 25109-25119.
    [34]
    Y. Li, D. Tian, L. Jiang, H. Zuo, L. Huang, M. Chen, J. Zuo, H. Wang, K. Li, J. Energy Chem. 96 (2024) 259-271.
    [35]
    M. Romay, D.P. Serrano, J.M. Escola, P. Pizarro, Chem. Eng. J. 496 (2024) 154039.
    [36]
    S. Daneshmand-Jahromi, M. Rahimpour, M. Meshksar, A. Hafizi, Catalysts 7 (2017) 286.
    [37]
    C. Shi, P. Zhang, Appl. Catal. B-Environ. 115 (2012) 190-200.
    [38]
    G.Y. Ramirez-Hernandez, T. Viveros-Garcia, R. Fuentes-Ramirez, I.R. Galindo-Esquivel, Int. J. Hydrog. Energy 41 (2016) 9332-9343.
    [39]
    Y. Kang, M. Tian, C. Huang, J. Lin, B. Hou, X. Pan, L. Li, A.I. Rykov, J. Wang, X. Wang, ACS Catal. 9 (2019) 8373-8382.
    [40]
    H. Sultan, A. Sultan, M. Abdellatief, Q. Tayyaba, M. Gul, T. Ali, Ceram. Int. 50 (2024) 44303-44315.
    [41]
    A. Bampenrat, V. Meeyoo, B. Kitiyanan, P. Rangsunvigit, T. Rirksomboon, Appl. Catal. A.-Gen. 373 (2010) 154-159.
    [42]
    F. Wang, S. Chen, S. Chen, J. Du, L. Duan, W. Xiang, Chem. Eng. J. 465 (2023) 143041.
    [43]
    J. Li, J. Li, Q. Zhu, Chin. J. Chem. Eng. 26 (2018) 2344-2350.
    [44]
    A. Carrero, J.A. Calles, A.J. Vizcaino, Chem. Eng. J. 163 (2010) 395-402.
    [45]
    J. Huo, J. Jing, W. Li, Int. J. Hydrog. Energy 39 (2014) 21015-21023.
    [46]
    J.S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, M.S. Dresselhaus, Carbon 47 (2009) 1303-1310.
    [47]
    M. Kong, Q. Yang, W. Lu, Z.Y. Fan, J.H. Fei, X.M. Zheng, T.D. Wheelock, Chin. J. Catal. 33 (2012) 1508-1516.
    [48]
    D. Feng, Y. Zhao, Y. Zhang, S. Sun, Int. J. Hydrog. Energy 42 (2017) 13070-13084.
    [49]
    C.F. Palma, Appl. Energy 111 (2013) 129-141.
    [50]
    C.H. Bartholomew, Appl. Catal. A.-Gen. 212 (2001) 17-60.
    [51]
    R.H.P.T. BAKER, Nature (1975) 37-39.
    [52]
    S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25-30.
    [53]
    S.C. Tjong, Mater. Sci. Eng. R.-Rep. 74 (2013) 281-350.
    [54]
    K. Zhao, Y. Shen, Z. Huang, F. He, G. Wei, A. Zheng, H. Li, Z. Zhao, J. Energy Chem. 26 (2017) 501-509.
    [55]
    M. Rezaei, S.M. Alavi, S. Sahebdelfar, P. Bai, X. Liu, Z. Yan, Appl. Catal. B-Environ. 77 (2008) 346-354.
    [56]
    G. Li, H. Cheng, H. Zhao, X. Lu, Q. Xu, C. Wu, Catal. Today 318 (2018) 46-51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return