Turn off MathJax
Article Contents
Qianqian Zhu, Shaofan Duan, Meixia Shan, Freek Kapteijn, Xin Gao, Yatao Zhang, Dongyang Li. Transferable Molecular Model for Benzimidazole-Linked Polymer Membranes Applied in Hydrogen Separation. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.020
Citation: Qianqian Zhu, Shaofan Duan, Meixia Shan, Freek Kapteijn, Xin Gao, Yatao Zhang, Dongyang Li. Transferable Molecular Model for Benzimidazole-Linked Polymer Membranes Applied in Hydrogen Separation. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.020

Transferable Molecular Model for Benzimidazole-Linked Polymer Membranes Applied in Hydrogen Separation

doi: 10.1016/j.gee.2025.12.020
  • Benzimidazole-linked polymers (BILPs), with their densely cross-linked ultramicroporous networks, are promising for hydrogen separation. However, the molecular selectivity mechanisms remain poorly understood, hindering rational design. We present a multiscale simulation for BILPs, using BILP-101 as a model, to precisely resolve its microstructural features and elucidate H2 separation performance at an unprecedented molecular level. Through meticulous optimization of simulation protocols, including force fields, atomic charges, chain configurations, and equilibration cycles, optimal simulation protocols were identified, and the interplay of pore architecture and chemical interactions driving H2 selectivity was uncovered. Our simulations not only demonstrate precise control over pore geometry but also accurately replicate experimental H2/CO2, H2/N2, H2/CH4 separation performance across standard and elevated temperatures. The generality of our model was further validated by its strong agreement with empirical data for BILP-5 and BILP-15. This work bridges advanced molecular modeling with experimental validation, providing design principles to accelerate the development of next-generation BILPs or other polymer membranes for energy-efficient gas separation.

     

  • loading
  • [1]
    T. Yurata, H. Lei, L. Tang, M. Lu, J. Patel, S. Lim, P. Piumsomboon, B. Chalermsinsuwan, C. Li, Int. J. Hydrogen Energy 44 (2019) 23120-23134.
    [2]
    J.K. Noerskov, C.H. Christensen, Science 312 (2006) 1322-1323.
    [3]
    B. Li, Z. Wang, Z. Gao, X. Han, Y. Li, Y. Ren, H. Huang, Adv. Funct. Mater. 33 (2023) 2300219.
    [4]
    M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, Science 339 (2013) 303-307.
    [5]
    W.S. Sun, M.J. Yin, W.H. Zhang, S. Li, N. Wang, Q.F. An, Green Energy Environ. 8 (2023) 1389-1397.
    [6]
    H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Science 356 (2017) eaab0530.
    [7]
    J. Zhang, C. Niu, N. Ren, J. Du, M. Shan, R. Castro-Munoz, Y. Zhang, Macromolecules 58 (2025) 3267-3277.
    [8]
    M.G. Rabbani, H.M. El-Kaderi, Chem. Mater. 24 (2012) 1511-1517.
    [9]
    M. Shan, J. Zhang, S. Cong, Y. Zhang, X. He, F. Kapteijn, X. Liu, Sep. Purif. Technol. 349 (2024) 127732.
    [10]
    S. Cong, J. Wang, Z. Wang, X. Liu, Green Chem. Eng. 2 (2021) 44-56.
    [11]
    M. Shan, X. Liu, X. Wang, I. Yarulina, B. Seoane, F. Kapteijn, J. Gascon, Sci. Adv. 4 (2018) eaau1698.
    [12]
    A. Gao, X. Yan, S. Cong, X. Wang, H. Liu, Z. Wang, X. Liu, J. Membr. Sci. 668 (2023) 121293.
    [13]
    S. Duan, D. Li, X. Yang, C. Niu, S. Sun, X. He, M. Shan, Y. Zhang, J. Membr. Sci. 671 (2023) 121396.
    [14]
    J. Han, Z. Dong, L. Hao, J. Gong, Q. Zhao, Green Energy Environ. 8 (2023) 151-162.
    [15]
    M. Chen, J. Zhou, J. Ma, W. Zheng, G. Dong, X. Li, Z. Tian, Y. Zhang, J. Wang, Y. Wang, Green Energy Environ. 10 (2025) 203-213.
    [16]
    Q. Yang, D. Liu, C. Zhong, J.R. Li, Chem. Rev. 113 (2013) 8261-8323.
    [17]
    G. Fan, D. Li, J. Wang, M. Shan, G. Dong, X. Feng, Y. Zhang, J. Membr. Sci. 716 (2025) 123503.
    [18]
    G.S. Larsen, P. Lin, K.E. Hart, C.M. Colina, C.M. Lastoskie, Macromolecules 44 (2011) 6944-6951.
    [19]
    Y. Ying, Z. Zhang, S.B. Peh, A. Karmakar, Y. Cheng, J. Zhang, C. Boothroyd, Y.M. Lam, Angew. Chem. Int. Ed. 60 (2021) 11318-11325.
    [20]
    J. Liu, J. Jiang, J. Phys. Chem. C 123 (2019) 6607-6615.
    [21]
    M. Shan, B. Seoane, A. Pustovarenko, A. Dikhtiarenko, J. Gascon, F. Kapteijn, J. Membr. Sci. 566 (2018) 213-222.
    [22]
    M. Meunier, S. Robertson, Mol. Simul. 47 (2021) 537-539.
    [23]
    H. Sun, P. Ren, J.R. Fried, Comput. Theor. Polym. Sci. 8 (1998) 229-246.
    [24]
    M.J. McQuaid, H. Sun, D. Rigby, J. Comput. Chem. 25 (2004) 61-71.
    [25]
    M.J. Hwang, T.P. Stockfisch, A.T. Hagler, J. Am. Chem. Soc. 116 (1994) 2515-2525.
    [26]
    J.R. Maple, M.J. Hwang, T.P. Stockfisch, U. Dinur, M. Waldman, C.S. Ewig, A.T. Hagler, J. Comput. Chem. 15 (1994) 162-182.
    [27]
    J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25 (2004) 1157-1174.
    [28]
    P. Athri, W.D. Wilson, J. Am. Chem. Soc. 131 (2009) 7618-7625.
    [29]
    Y. Wang, J. Wu, Y. Gao, K. Li, C. Wang, X. Cui, Green Energy Environ. 9 (2024) 1193-1198.
    [30]
    Y. Wang, X. Jia, L. Li, J. Yang, J. Li, Green Energy Environ. 7 (2022) 307-313.
    [31]
    B.B. Mohammed, K. Yamni, N. Tijani, A.A. Alrashdi, H. Zouihri, Y. Dehmani, I.M. Chung, S.H. Kim, J. Mol. Liq. 296 (2019) 111997.
    [32]
    D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59-64.
    [33]
    R.L.C. Akkermans, N.A. Spenley, S.H. Robertson, Mol. Simul. 39 (2013) 1153-1164.
    [34]
    T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 149 (2012) 134-141.
    [35]
    M. Pinheiro, R.L. Martin, C.H. Rycroft, A. Jones, J. Mol. Graph. Model. 44 (2013) 208-219.
    [36]
    Y.F. Hu, K.L. Xue, X.C. Yu, J.X. Hou, J. Polym. Res. 26 (2019) 1-8.
    [37]
    E. Moulin, C.C. Carmona-Vargas, N. Giuseppone, Chem. Soc. Rev. 52 (2023) 7333-7358.
    [38]
    D. Li, K. Panchal, R. Mafi, Macromolecules 51 (2018) 6997-7012.
    [39]
    D. Li, K. Panchal, N.K. Vasudevan, Chem. Eng. Sci. 249 (2022) 117334.
    [40]
    M. Wang, J. Jiang, Adv. Funct. Mater. 34 (2024) 2314683.
    [41]
    Y. Zhang, S.I. Furukawa, T. Nitta, Sep. Purif. Technol. 32 (2003) 215-221.
    [42]
    J.W. Oh, K.Y. Cho, M.Y. Kan, H.J. Yu, D.Y. Kang, J.S. Lee, J. Membr. Sci. 596 (2020) 117735.
    [43]
    G. Qin, A. Du, Q. Sun, Energy Technol. 6 (2018) 205-212.
    [44]
    L. Zhang, Z. Hu, J. Jiang, J. Phys. Chem. C 116 (2012) 19268-19277.
    [45]
    G. Yilmaz, S. Keskin, Ind. Eng. Chem. Res. 51 (2012) 14218-14228.
    [46]
    A.T. Hagler, S. Lifson, P. Dauber, J. Am. Chem. Soc. 101 (1979) 5122-5130.
    [47]
    A. Ozcan, S. Keskin, J. Chem. Technol. Biotechnol. 90 (2015) 1707-1718.
    [48]
    Z. Meng, Q. Li, H. Sun, Y. Wang, X. Li, Green Energy Environ. 10 (2025) 1326-1336.
    [49]
    R. Pan, X. Tu, X. Ma, L. Liu, T. Yan, M. Tong, Chem. Eng. Sci. 310 (2025) 121520.
    [50]
    Y. Qiu, L. Chen, X. Zhang, D. Wang, Y. Tian, Z. Zhou, AIChE J. 70 (2024) e18575.
    [51]
    Y. Qiu, L. Wang, L. Chen, Z. Zhou, J. Wu, Y. Tian, Chem. Sci. 16 (2025) 17450-17460.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return