Turn off MathJax
Article Contents
Lijun Xiong, Dandan Zhu, Chenglong Qiu, Weihong Zeng, Mingshi Xu, Shanshan Wang, Yong Yang. Metal-free C(CN)3 cooperated with Co-Ti dual sites in bimetallic CoTi-MOF as a tandem photocatalyst for highly efficient C2H4 production. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.019
Citation: Lijun Xiong, Dandan Zhu, Chenglong Qiu, Weihong Zeng, Mingshi Xu, Shanshan Wang, Yong Yang. Metal-free C(CN)3 cooperated with Co-Ti dual sites in bimetallic CoTi-MOF as a tandem photocatalyst for highly efficient C2H4 production. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.019

Metal-free C(CN)3 cooperated with Co-Ti dual sites in bimetallic CoTi-MOF as a tandem photocatalyst for highly efficient C2H4 production

doi: 10.1016/j.gee.2025.12.019
  • The photocatalytic reduction of carbon dioxide (CO2) into high-value C2+ hydrocarbons represents a sustainable pathway to alleviate energy shortages and reduce atmospheric CO2 levels. In this study, a unique tandem photocatalyst (CoTi-CN), is constructed by integrating bimetallic CoTi-MOF with metal-free half-metallic C(CN)3. This composite demonstrates markedly enhanced activity and selectivity in the photocatalytic CO2 reduction to ethylene (C2H4), achieving a C2H4 selectivity of 36.8% and a generation yield of 31.3 μmol g−1 over 5 h. Density functional theory (DFT) calculations combined with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis reveal that C(CN)3 acts as an efficient CO2 to CO converter, while CoTi-MOF favors the adsorption and C-C coupling of *CO intermediates. The spatially decoupled CO generation and C-C coupling processes lead to optimized intermediate coverage and reduced energy barriers, resulting in superior selectivity toward multi-carbon products. This work opens new horizons for the design of tandem photocatalysts that combine half-metallic catalysts with bimetallic MOFs, achieving a significant enhancement in the activity and selectivity of photocatalytic C2H4 production.

     

  • loading
  • [1]
    L. Guo, J. Sun, Q. Ge, N. Tsubaki, J. Mater. Chem. A. 6 (2018) 23244−23262.
    [2]
    J. Wang, C. Yang, L. Mao, X. Cai, Z. Geng, H. Zhang, J. Zhang, X. Tan, J. Ye, T. Yu, Adv. Funct. Mater. 33 (2023) 2213901.
    [3]
    Z. Zhao, H. Zhu, J. Huang, P. Liao, X. Chen, ACS Catal. 12 (2022) 7986−7993.
    [4]
    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta. 39 (1994) 1833−1839.
    [5]
    A. Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, ChemPhysChem. 18 (2017) 3266−3273.
    [6]
    G. Jia, Y. Zhang, JC. Yu, Z. Guo, Adv. Mater. 36 (2024) 2403153.
    [7]
    J. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, J. Am. Chem. Soc. 141(2019) 2490-2499.
    [8]
    H. Liang, T. Beweries, R. Francke, M. Beller, Angew. Chem., Int. Ed. 134 (2022) e202200723.
    [9]
    C. Chen, Y. Li, S. Yu, S. Louisia, J. Jin, M. Li, M. B. Ross, P. Yang, Joule. 4 (2020) 1688−1699.
    [10]
    J. Liu, T. Liu, P. Du, L. Zhang, J. Lei, Angew. Chem. Int. Ed. 58 (2019) 7808−7812.
    [11]
    J. Zhang, W. He, T. Quast, J. R. C. Junqueira, S. Saddeler, S. Schulz, W. Schuhmann, Angew. Chem. Int. Ed. 62 (2023) e202214830.
    [12]
    J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu, B. Chen, C. Tan, P. Yin, H. Zheng, Q. Li, S. Chen, W. Xu, X. Wang, G. Wu, R. Sun, X. Shan, X. Hong, H. Zhang, Adv Mater. 33 (2021) 2006711.
    [13]
    F. Hu, L. Yang, Y. Jiang, C. Duan, X. Wang, L. Zeng, X. Lv, D. Duan, Q. Liu, T. Kong, J. Jiang, R. Long, Y. Xiong, Angew. Chem. Int. Ed. 60 (2021) 26122−26127.
    [14]
    M. B. Ross, P. De Luna, Y. Li, C. T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nature Catal. 2 (2019) 648−658.
    [15]
    L. R. L. Ting, O. Pique, S. Y. Lim, M. Tanhaei, F. Calle-Vallejo, B. S. Yeo, ACS Catal. 10 (2020) 4059−4069.
    [16]
    K. Yang, Y. Sun, S. Chen, M. Li, M. Zheng, L. Ma, W. Fan, Y. Zheng, Q. Li, J. Duan, Small. 19 (2023) 2301536.
    [17]
    D. Ren, J. Gao, L. Pan, Z. Wang, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Angew. Chem. Int. Ed. 58 (2019) 15036−15040.
    [18]
    F. Li, Y. Li, Z. Wang, J. Li, D. H. Nam, Y. Lum, M. Luo, X. Wang, A. Ozden, S. F. Hung, B. Chen, Y. Wang, J. Wicks, Y. Xu, Y. Li, C. M. Gabardo, C. T. Dinh, Y. Wang, T. Zhuang, D. Sinton, E. H. Sargent, Nature Catal. 3 (2020) 75−82.
    [19]
    J. Jiao, R. Lin, S. Liu, W. C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S. F. Hung, H. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Nature Chem. 11 (2019) 222−228.
    [20]
    J. Gao, H. Zhang, X. Guo, J. Luo, S. M. Zakeeruddin, D. Ren, M. Gratzel, J. Am. Chem. Soc. 141 (2019) 18704-18714.
    [21]
    H. Zhang, X. Chang, J. Chen, W. A Goddard III, B. Xu, M. J Cheng, Q. Lu, Nat. Commun. 10 (2019) 3340.
    [22]
    K. Sun, Y. Qian, H. Jiang, Angew. Chem. Int. Ed. 62 (2023) e202217565.
    [23]
    D. H. Nam, O. Shekhah, G. H. Lee, A. Mallick, H. Jiang, F. Li, B. Chen, J. Wicks, M. Eddaoudi, E. H. Sargent, J. Am. Chem. Soc. 142 (2020) 21513−21521.
    [24]
    J. S. Lee, X. Wang, H. Luo, S. Dai, Adv. Mater. 22 (2010) 1004−1007.
    [25]
    L. Liu, C. Zhao, H. Zhao, D. Pitts, Y. Li, Chem. Commun. 49 (2013) 3664−3666.
    [26]
    G. Zhou, Y. Shan, Y. Hu, X. Xu, L. Long, J. Zhang, J. Dai, J. Guo, J. Shen, S. Li, L. Liu, X. Wu, Nature Commun. 9 (2018) 3366.
    [27]
    Y. Yang, Z. Tang, B. Zhou, J. Shen, H. He, A. Ali, Q. Zhong, Y. Xiong, C. Gao, A. Alsaedi, Appl. Catal. B: Environ. 264 (2020) 118470.
    [28]
    L. Xiong. Y. Yang. Q. Deng. W. Dong. X. Zhang. J. Shen, Carbon. 218 (2023) 118715.
    [29]
    J. Dong, J. Zhao, X. Yan, L. Li, G. Liu, M. Ji, B. Wang, Y. She, H. Li, J. Xia, Appl. Catal. B: Environ. 351 (2024) 123993.
    [30]
    Q. Chen, S. Li, H. Xu, G. Wang, Y. Qu, P. Zhu, D. Wang, Chin. J. Catal. 41 (2020) 514−523.
    [31]
    P. Qiu, Y. Yao, S. Lu, L. Chen, Y. Chen, X. Liao, Fuel. 351 (2023) 129043.
    [32]
    M. Li, J. Yuan, G. Wang, L. Yang, J. Shao, H. Li, J. Lu, Sep. Purif. Technol. 298 (2022) 121658.
    [33]
    Y. Zhang, J. Luan, P. Li, L. Jiang, H. Yan, W. Liu, Z. Yan, Carbon. 228 (2024) 119430.
    [34]
    M. Zhang, J. Li, R. Wang, S. Zhao, S. Zang, T. C. W. Mak, Adv. Mater. 8 (2021) 2101884.
    [35]
    Y. Fu, T. Huang, L. Zhang, J. Zhu, X. Wang, Nanoscale. 7 (2015) 13723−13733.
    [36]
    P. Qiu, Y. Yao, S. Lu, L. Chen, Y. Chen, X. Liao, Fuel. 351 (2023) 129043.
    [37]
    X. Chen, X. Peng, L. Jiang, X. Yuan, J. Fei, W. Zhang, Chem. Engin. J. 427 (2022) 130945.
    [38]
    P. Karthik, A. R. M. Shaheer, A. Vinu, B. Neppolian, Small. 16 (2020) 1902990.
    [39]
    J. Jin, P. Li, D. Chun, B. Jin, K. Zhang, J. H. Park, Adv. Funct. Mater. 31 (2021) 2102511.
    [40]
    Y. Li, J. Tian, Z. Liu, Z. Liu, D. Dong, F. Wang, W. Wang, M. Liu, J. Dan, Y. Li, F. Yu, B. Dai, Y. Yu, Green Energy Environ. 8 (2023) 1102-1116.
    [41]
    M. Z. Hussain, Z. Yang, A. M. E. Khalil, S. Hussain, S. U. Awan, Q. Jia, R. A. Fischer, Y. Zhu, Y. Xia, J. Mater. Sci. Technol. 101 (2022) 49−59.
    [42]
    L. Jing, M. Xie, Y. Xu, C. Tong, X. Du, H. Zhao, N. Zhong, H. Li, J. Hu, Green Energy Environ. 9 (2024) 1159-1170.
    [43]
    F. Zelenak, M. Kovacova, Z. Moravec, M. Cernak, R. Krumpolec, Carbon. 215 (2023) 118436.
    [44]
    Y. Luo, A. Serrano-Lotina, F. F. Budihardjo, S. Taghipour, S. A. Ferdousi, L. Li, J. J. Delgado, A. Lopez-Buendia, R. Portela, W. Han, M. A. Banares, K. L. Yeung, Chem. Engin. J. 466 (2023) 143254.
    [45]
    M. Lan, R. Guo, Y. Dou, J. Zhou, A. Zhou, J. Li, Nano Energy. 33 (2017) 238−246.
    [46]
    L. Sun, C. Liu, J. Li, Y. Zhou, H. Wang, P. Huo, C. Ma, Y. Yan, Chin. J. Catal. 40 (2019) 80−94.
    [47]
    Y. Wu, Z. Liu, Y. Li, J. Chen, X. Zhu, P. Na, Chin. J. Catal. 40 (2019) 60−69.
    [48]
    X. Yang, F. Qian, G. Zou, M. Li, J. Lu, Y. Li, M. Bao, Appl. Catal. B: Environ. 193 (2016) 22−35.
    [49]
    J. Dong, Y. Zhang, L. Liu, X. Zhang, L. Li, G. Liu, H. Li, P. Yan, J. Xia, Chem. Commun. 61 (2025) 7125-7128.
    [50]
    S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136.
    [51]
    R. Zhang, H. Wang, S. Tang, C. Liu, F. Dong, H. Yue, B. Liang, ACS Catal. 8 (2018) 9280−9286.
    [52]
    W. Gao, S. Li, H. He, X. Li, Z. Cheng, Y. Yang, J. Wang, Q. Shen, X. Wang, Y. Xiong, Y. Zhou, Nature Commun. 12 (2021) 4747.
    [53]
    Y. Cao, L. Guo, M. Dan, D. E. Doronkin, C. Han, Z. Rao, Y. Liu, J. Meng, Z. Huang, K. Zheng, P. Chen, F. Dong, Y. Zhou, Nature Commun. 12 (2021) 1675.
    [54]
    J. Xu, Z. Ju, W. Zhang, Y. Pan, J. Zhu, J. Mao, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, Angew. Chem. Int. Ed. 60 (2021) 8705−8709.
    [55]
    J. Hao, D. Yang, J. Wu, B. Ni, L. Wei, Q. Xu, Y. Min, H. Li, Chem. Engin. J. 423 (2021) 130190.
    [56]
    A. Du, S. Sanvito, S. C. Smith, Phys. Rev. Lett. 108 (2012) 197207.
    [57]
    Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B: Environ. 371 (2025) 125275.
    [58]
    P. Chen, B. Lei, X. Dong, H. Wang, J. Sheng, W. Cui, J. Li, Y. Sun, Z. Wang, F. Dong, ACS Nano. 14 (2020) 15841−15852.
    [59]
    Y. Shi, J. Li, C. Mao, S. Liu, X. Wang, X. Liu, S. Zhao, X. Liu, Y. Huang, L. Zhang, Nature Commun.12 (2021) 5923.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (9) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return