Turn off MathJax
Article Contents
Xue Ding, Sze Xing Tan, Zhang Lili, Jiajian Gao. Ammonia Synthesis and Cracking: Thermocatalytic versus Electrochemical Approaches. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.018
Citation: Xue Ding, Sze Xing Tan, Zhang Lili, Jiajian Gao. Ammonia Synthesis and Cracking: Thermocatalytic versus Electrochemical Approaches. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.018

Ammonia Synthesis and Cracking: Thermocatalytic versus Electrochemical Approaches

doi: 10.1016/j.gee.2025.12.018
  • Ammonia (NH3) is a key chemical for agriculture, energy storage, and industrial processes. Its synthesis and cracking (decomposition) are pivotal for a sustainable energy future, particularly in the context of green energy transitions. Two major approaches for these processes are thermocatalysis and electrocatalysis, each with unique mechanisms, challenges, and advantages, as discussed in this review. Thermocatalysis is more mature but energy-intensive, while electrocatalysis promises lower energy consumption and compatibility with renewable energy sources. Electrochemical approach has the potential to eliminate carbon emissions if coupled with green electricity, whereas thermocatalysis is reliant on fossil fuels unless carbon capture is implemented. Thermocatalytic processes for ammonia are well-established at an industrial scale, whereas electrocatalytic systems require further technological development to match this capacity. In summary, thermocatalysis remains the dominant method for ammonia synthesis and cracking due to its industrial maturity. However, electrocatalysis offers a promising pathway toward sustainable and decentralized solutions, provided ongoing challenges in efficiency, stability, and scalability are addressed. Balancing these technologies will be crucial in transitioning to a low-carbon economy.

     

  • loading
  • [1]
    J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.
    [2]
    D.R. Macfarlane, P.V. Cherepanov, J. Choi, B.H.R. Suryanto, R.Y. Hodgetts, J.M. Bakker, F.M. Ferrero Vallana, A.N. Simonov, Joule 4 (2020) 1186-1205.
    [3]
    N. Morlanes, S.P. Katikaneni, S.N. Paglieri, A. Harale, B. Solami, S.M. Sarathy, J. Gascon, Chem. Eng. J. 408 (2021).
    [4]
    E.F. Eyisse, E. Nadimi, D. Wu, Energies 18 (2025) 29.
    [5]
    E. Spatolisano, L.A. Pellegrini, A.R. De Angelis, S. Cattaneo, E. Roccaro, Ind. Eng. Chem. Res. 62 (2023) 10813-10827.
    [6]
    J. Ashcroft, H. Goddin, Johns. Matthey Technol. Rev. 66 (2022) 375-385.
    [7]
    C.H. Christensen, T. Johannessen, R.Z. Soerensen, J.K. Noerskov, Catal. Today 111 (2006) 140-144.
    [8]
    T. Meng, D. Cui, Y. Shi, Y. Ji, M. Cheng, B. Tu, Z. Lan, Int. J. Hydrogen Energy 48 (2023) 30887-30898.
    [9]
    J. Yun, G. Xiong, S. Kim, D. Bardgett, S. Choi, S.M. Haile, ACS Energy Lett. 9 (2024) 5520-5528.
    [10]
    I. Boukholda, N.B. Ezzine, A. Bellagi, Int. J. Thermofluids 27 (2025) 101213.
    [11]
    H. Tan, Z. Sang, Y. Tian, W. Peng, X. Liu, J. Liang, ACS Energy Lett. 9 (2024) 5120-5136.
    [12]
    R. Schlogl, Angew. Chem. Int. Ed. Engl. 42 (2003) 2004-2008.
    [13]
    H. Liu, Chin. J. Catal. 35 (2014) 1619-1640.
    [14]
    C. Smith, A.K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 13 (2020) 331-344.
    [15]
    M.C. Hatzell, ACS Energy Lett. 7 (2022) 4132-4133.
    [16]
    P. Peng, P. Chen, C. Schiappacasse, N. Zhou, E. Anderson, D. Chen, J. Liu, Y. Cheng, R. Hatzenbeller, M. Addy, Y. Zhang, Y. Liu, R. Ruan, J. Clean. Prod. 177 (2018) 597-609.
    [17]
    X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Zhang, S. Yang, Z. Jin, Nano Res. 12 (2019) 1229-1249.
    [18]
    R. Manjunatha, A. Karajic, M. Liu, Z. Zhai, L. Dong, W. Yan, D.P. Wilkinson, J. Zhang, Electrochem. Energy Rev. 3 (2020) 506-540.
    [19]
    B. Wang, L. Shen, Ind. Eng. Chem. Res. 61 (2022) 18215-18231.
    [20]
    H. Guo, A.R.P. Harrison, M. Gao, X. Zhang, Q. Chen, Z. Cui, B. Nie, Chem. Eng. J. 500 (2024) 157321.
    [21]
    X. Zhang, C. Pei, Z.-J. Zhao, J. Gong, Energy Environ. Sci. 17 (2024) 2381-2405.
    [22]
    C. Santhosh, R. Sankannavar, Appl. Energy 352 (2023) 121960.
    [23]
    V.S. Marakatti, E.M. Gaigneaux, ChemCatChem 12 (2020) 5838-5857.
    [24]
    B. Wang, T. Li, F. Gong, M.H.D. Othman, R. Xiao, Fuel Process. Technol. 235 (2022) 107380.
    [25]
    I.A. Amar, R. Lan, C.T.G. Petit, S. Tao, J. Solid State Electrochem. 15 (2011) 1845-1860.
    [26]
    X. Fu, J. Zhang, Y. Kang, Chem Catal. 2 (2022) 2590-2613.
    [27]
    F. Jiao, B. Xu, Adv. Mater. 31 (2019) e1805173.
    [28]
    Y.H. Moon, N.Y. Kim, S.M. Kim, Y.J. Jang, Catalysts 12 (2022).
    [29]
    V.T. Chebrolu, D. Jang, G.M. Rani, C. Lim, K. Yong, W.B. Kim, Carbon Energy 5 (2023) e361.
    [30]
    S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Nat. Catal. 1 (2018) 490-500.
    [31]
    O.A. Ojelade, S.F. Zaman, B.-J. Ni, J. Environ. Manag. 342 (2023) 118348.
    [32]
    F.B. Juangsa, A.R. Irhamna, M. Aziz, Int. J. Hydrogen Energy 46 (2021) 14455-14477.
    [33]
    J. Gao, S. Choo Sze Shiong, Y. Liu, Chem. Eng. J. 472 (2023) 145033.
    [34]
    K. Trangwachirachai, K. Rouwenhorst, L. Lefferts, J.A. Faria Albanese, Curr. Opin. Green Sustain. Chem. 49 (2024) 100945.
    [35]
    P. Shafie, A. Dechamplain, J. Lepine, Int. J. Energy Res. 2024 (2024) 9534752.
    [36]
    J.E. Lee, J. Lee, H. Jeong, Y.-K. Park, B.-S. Kim, Chem. Eng. J. 475 (2023) 146108.
    [37]
    I. Lucentini, X. Garcia, X. Vendrell, J. Llorca, Ind. Eng. Chem. Res. 60 (2021) 18560-18611.
    [38]
    A. Alzaabi, F. Almarzooqi, D. Choi, Int. J. Hydrogen Energy 94 (2024) 23-52.
    [39]
    S. Duric, Ann. of Math. 7 (2024) 300-304.
    [40]
    F. Haber, Nobel lecture 2 (1920).
    [41]
    S. Duric, E. Varupa, J. Appl. Math. Phys. 13 (2025) 1-10.
    [42]
    J.K. Nørskov, Studt, F., Abild-Pedersen, F. And Bligaard, T., in Fundamental Concepts in Heterogeneous Catalysis, 2014, pp. 26-46.
    [43]
    C. Mao, H. Li, H. Gu, J. Wang, Y. Zou, G. Qi, J. Xu, F. Deng, W. Shen, J. Li, S. Liu, J. Zhao, L. Zhang, Chem 5 (2019) 2702-2717.
    [44]
    V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today 286 (2017) 2-13.
    [45]
    W. Lian, Y. Mo, L. Lei, J. Zhang, Y. Ou, R. Qiu, Z. Tian, J. Liu, J. Liu, Sustain. Energy Fuels 6 (2022) 711-720.
    [46]
    O.A. Ojelade, S.F. Zaman, Chem. Pap. 75 (2021) 57-65.
    [47]
    H. Liu, Ammonia synthesis catalysts: innovation and practice, World Scientific, 2013.
    [48]
    K.H. Rouwenhorst, A.G. Van Der Ham, L. Lefferts, Int. J. Hydrogen Energy 46 (2021) 21566-21579.
    [49]
    L. Zhou, X. Li, Q. Li, A. Kalu, C. Liu, X. Liu, W. Li, ACS Catal. 13 (2023) 15087-15106.
    [50]
    S. Brown, J. Hu, Chem. Eng. Sci. 280 (2023) 119063.
    [51]
    P. Stoltze, J. Noerskov, J. Catal. 110 (1988) 1-10.
    [52]
    M. Bowker, I. Parker, K. Waugh, Appl. Catal. 14 (1985) 101-118.
    [53]
    P. Stoltze, J. Noerskov, Phys. Rev. Lett. 55 (1985) 2502.
    [54]
    G. Ertl, Cat. Rev. Sci. Eng. 21 (1980) 201-223.
    [55]
    M. Spencer, Catal. Lett. 13 (1992) 45-53.
    [56]
    P. Emmett, S. Brunauer, J. Am. Chem. Soc. 56 (1934) 35-41.
    [57]
    H. Vandervell, K. Waugh, Chem. Phys. Lett. 171 (1990) 462-468.
    [58]
    G. Ertl, S. Lee, M. Weiss, Surf. Sci. 114 (1982) 527-545.
    [59]
    C. Rettner, H. Stein, Phys. Rev. Lett. 59 (1987) 2768.
    [60]
    D. Johnson, M. Roberts, Surf. Sci. 87 (1979) L255-L259.
    [61]
    C.M. Goodwin, P. Lomker, D. Degerman, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. Katja Mathiesen, R. Rameshan, G.L.S. Rodrigues, C. Schlueter, P. Amann, A. Nilsson, Nature 625 (2024) 282-286.
    [62]
    F. Garcia-Garcia, A. Guerrero-Ruiz, I. Rodriguez-Ramos, Top. Catal. 52 (2009) 758-764.
    [63]
    J.-Z. Qiu, J. Hu, J. Lan, L.-F. Wang, G. Fu, R. Xiao, B. Ge, J. Jiang, Chem. Mater. 31 (2019) 9413-9421.
    [64]
    X. Wang, X. Peng, H. Ran, B. Lin, J. Ni, J. Lin, L. Jiang, Ind. Eng. Chem. Res. 57 (2018) 17375-17383.
    [65]
    Y. Zhou, C. Wang, X. Peng, T. Zhang, X. Wang, Y. Jiang, H. Qi, L. Zheng, J. Lin, L. Jiang, CCS Chem. 4 (2022) 1758-1769.
    [66]
    Z. Chen, Y. Ye, T. Peng, C. Wu, H. Li, X. Pan, X. Bao, ACS Catal. 13 (2023) 14385-14394.
    [67]
    X. Peng, M. Zhang, T. Zhang, Y. Zhou, J. Ni, X. Wang, L. Jiang, Chem. Sci. 15 (2024) 5897-5915.
    [68]
    Y. Bai, Y. Zhang, J. Hu, J. Li, S. Wan, J. Lin, Y. Wang, S. Wang, ACS Catal. (2025) 1455-1466.
    [69]
    H. Hosono, in CO2 Free Ammonia as an Energy Carrier: Japan's Insights, eds. Aika, K.-i.; Kobayashi, H., Springer Nature Singapore, Singapore, 2023, pp. 325-338.
    [70]
    M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, Nat. Chem. 4 (2012) 934-940.
    [71]
    M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P.V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 6 (2015) 6731.
    [72]
    M. Hattori, T. Mori, T. Arai, Y. Inoue, M. Sasase, T. Tada, M. Kitano, T. Yokoyama, M. Hara, H. Hosono, ACS Catal. 8 (2018) 10977-10984.
    [73]
    M. Hattori, K. Miyashita, Y. Nagasawa, R. Suzuki, M. Hara, Adv. Sci. (2025) 2410313.
    [74]
    Y. Ogura, K. Sato, S.-I. Miyahara, Y. Kawano, T. Toriyama, T. Yamamoto, S. Matsumura, S. Hosokawa, K. Nagaoka, Chem. Sci. 9 (2018) 2230-2237.
    [75]
    V. Shadravan, A. Cao, V.J. Bukas, M.K. Groenborg, C.D. Damsgaard, Z. Wang, J. Kibsgaard, J.K. Noerskov, I. Chorkendorff, Energy Environ. Sci. 15 (2022) 3310-3320.
    [76]
    J. Feng, L. Liu, X. Ju, M. Wang, X. Zhang, J. Wang, P. Chen, ACS Sustain. Chem. Eng. 10 (2022) 10181-10191.
    [77]
    M. Hattori, S. Iijima, T. Nakao, H. Hosono, M. Hara, Nat. Commun. 11 (2020) 2001.
    [78]
    P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, Nat. Chem. 9 (2017) 64-70.
    [79]
    W. Gao, P. Wang, J. Guo, F. Chang, T. He, Q. Wang, G. Wu, P. Chen, ACS Catal. 7 (2017) 3654-3661.
    [80]
    Y. Ogura, K. Tsujimaru, K. Sato, S.-I. Miyahara, T. Toriyama, T. Yamamoto, S. Matsumura, K. Nagaoka, ACS Sustain. Chem. Eng. 6 (2018) 17258-17266.
    [81]
    B.H. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov, D.R. Macfarlane, Nat. Catal. 2 (2019) 290-296.
    [82]
    I.G. Zacharia, W.M. Deen, Ann. Biomed. Eng. 33 (2005) 214-222.
    [83]
    X. Fu, Chin. J. Catal. 53 (2023) 8-12.
    [84]
    D. Dhanabal, S.S. Markandaraj, S. Shanmugam, ACS Catal. 13 (2023) 9136-9149.
    [85]
    A.N. Simonov, M.T.M. Koper, D.R. Macfarlane, Nat. Chem. Eng. (2025).
    [86]
    M. Belotti, F. Matamala-Troncoso, A.I. Mckay, T.M. Vu, D.R. Macfarlane, A.N. Simonov, Joule 9 (2025).
    [87]
    S.Z. Andersen, V. Colic, S. Yang, J.A. Schwalbe, A.C. Nielander, J.M. Mcenaney, K. Enemark-Rasmussen, J.G. Baker, A.R. Singh, B.A. Rohr, M.J. Statt, S.J. Blair, S. Mezzavilla, J. Kibsgaard, P.C.K. Vesborg, M. Cargnello, S.F. Bent, T.F. Jaramillo, I.E.L. Stephens, J.K. Norskov, I. Chorkendorff, Nature 570 (2019) 504-508.
    [88]
    A.R. Singh, B.A. Rohr, J.A. Schwalbe, M. Cargnello, K. Chan, T.F. Jaramillo, I. Chorkendorff, J.K. Noerskov, ACS Catal. 7 (2016) 706-709.
    [89]
    E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J.K. Norskov, Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.
    [90]
    F. Fichter, P. Girard, H. Erlenmeyer, HCA 13 (1930) 1228- 1236.
    [91]
    A. Tsuneto, A. Kudo, T. Sakata, J. Electroanal. Chem. 367 (1994) 183-188.
    [92]
    S.Z. Andersen, M.J. Statt, V.J. Bukas, S.G. Shapel, J.B. Pedersen, K. Krempl, M. Saccoccio, D. Chakraborty, J. Kibsgaard, P.C.K. Vesborg, J. Noerskov, I. Chorkendorff, Energy Environ. Sci. 13 (2020) 4291-4300.
    [93]
    K. Li, S.Z. Andersen, M.J. Statt, M. Saccoccio, V.J. Bukas, K. Krempl, R. Sazinas, J.B. Pedersen, V. Shadravan, Y. Zhou, D. Chakraborty, J. Kibsgaard, P.C.K. Vesborg, J.K. Norskov, I. Chorkendorff, Science 374 (2021) 1593-1597.
    [94]
    S. Li, Y. Zhou, K. Li, M. Saccoccio, R. Sazinas, S.Z. Andersen, J.B. Pedersen, X. Fu, V. Shadravan, D. Chakraborty, J. Kibsgaard, P.C.K. Vesborg, J.K. Noerskov, I. Chorkendorff, Joule 6 (2022) 2083-2101.
    [95]
    F. Duan, J. Chen, M. Zhang, Y. Liu, H. Xue, Y. Sun, Q. Li, X. Zhang, Z. Gao, Z. Lu, P. Schwaller, G. Zhang, J. Zhang, M. Yuan, J. Am. Chem. Soc. 147 (2025) 24317-24325.
    [96]
    Y. Sun, T. Ma, H. Wang, J. Qiu, Chem 10 (2024) 1641-1643.
    [97]
    B.H.R. Suryanto, K. Matuszek, J. Choi, R.Y. Hodgetts, H.-L. Du, J.M. Bakker, C.S.M. Kang, P.V. Cherepanov, A.N. Simonov, D.R. Macfarlane, Science 372 (2021) 1187-1191.
    [98]
    B.A. Rohr, A.R. Singh, J.K. Noerskov, J. Catal. 372 (2019) 33-38.
    [99]
    H.-L. Du, M. Chatti, R.Y. Hodgetts, P.V. Cherepanov, C.K. Nguyen, K. Matuszek, D.R. Macfarlane, A.N. Simonov, Nature 609 (2022) 722-727.
    [100]
    X. Fu, J.B. Pedersen, Y. Zhou, M. Saccoccio, S. Li, R. Sazinas, K. Li, S.Z. Andersen, A. Xu, N.H. Deissler, J.B.V. Mygind, C. Wei, J. Kibsgaard, P.C.K. Vesborg, J.K. Norskov, I. Chorkendorff, Science 379 (2023) 707-712.
    [101]
    X. Fu, V.A. Niemann, Y. Zhou, S. Li, K. Zhang, J.B. Pedersen, M. Saccoccio, S.Z. Andersen, K. Enemark-Rasmussen, P. Benedek, A. Xu, N.H. Deissler, J.B.V. Mygind, A.C. Nielander, J. Kibsgaard, P.C.K. Vesborg, J.K. Norskov, T.F. Jaramillo, I. Chorkendorff, Nat. Mater. 23 (2024) 101-107.
    [102]
    C.K. Klein, A. Lindenfelser, M.A. Yusov, A. Jain, R.J.R. Jones, J. Gregoire, K. Manthiram, Joule 9 (2025).
    [103]
    M. Krebsz, R.Y. Hodgetts, S. Johnston, C.K. Nguyen, Y. Hora, D.R. Macfarlane, A.N. Simonov, Energy Environ. Sci. 17 (2024) 4481-4487.
    [104]
    J. Miao, C. Chen, L. Cao, R. Al Nuaimi, Z. Li, K.W. Huang, Z. Lai, Angew. Chem. Int. Ed. Engl. 64 (2025) e202503465.
    [105]
    J. Lin, Y. Li, H. Yan, T. Qi, S. Liang, L. Jiang, AlChE J. 71 (2025) e18652.
    [106]
    Y. Nie, H. Yan, S. Lu, H. Zhang, T. Qi, S. Liang, L. Jiang, Chin. J. Catal. 59 (2024) 293-302.
    [107]
    S. Lu, G. Lin, H. Yan, Y. Li, T. Qi, Y. Li, S. Liang, L. Jiang, ACS Catal. 14 (2024) 14887-14894.
    [108]
    S.C. Jesudass, S. Surendran, J.Y. Kim, T.-Y. An, G. Janani, T.-H. Kim, J.K. Kim, U. Sim, Electrochem. Energy Rev. 6 (2023).
    [109]
    M. Jiang, X. Chen, F. Chen, M. Wang, X. Luo, Y. He, C. Wu, L. Zhang, X. Li, X. Liao, Z. Jiang, Z. Jin, Chem 11 (2025).
    [110]
    V. Azumah, L. Kavalsky, V. Viswanathan, J. Catal. (2025).
    [111]
    J. Zhang, A. Yu, D.-S. Li, C. Sun, Mol. Catal. 569 (2024).
    [112]
    V.A. Niemann, M. Doucet, P. Benedek, N.H. Deissler, J.B.V. Mygind, S.W. Lee, I. Rios Amador, W.L. Willoughby, I. Chorkendorff, A.C. Nielander, W.A. Tarpeh, T.F. Jaramillo, J. Am. Chem. Soc. 147 (2025) 12469-12480.
    [113]
    N. Lazouski, Z.J. Schiffer, K. Williams, K. Manthiram, Joule 3 (2019) 1127-1139.
    [114]
    N. Lazouski, M. Chung, K. Williams, M.L. Gala, K. Manthiram, Nat. Catal. 3 (2020) 463-469.
    [115]
    K. Steinberg, X. Yuan, C.K. Klein, N. Lazouski, M. Mecklenburg, K. Manthiram, Y. Li, Nat. Energy 8 (2023) 138-148.
    [116]
    N. Lazouski, K.J. Steinberg, M.L. Gala, D. Krishnamurthy, V. Viswanathan, K. Manthiram, ACS Catal. 12 (2022) 5197-5208.
    [117]
    N. Lazouski, A. Limaye, A. Bose, M.L. Gala, K. Manthiram, D.S. Mallapragada, ACS Energy Lett. 7 (2022) 2627-2633.
    [118]
    Y. Zhou, X. Fu, I. Chorkendorff, J.K. Noerskov, ACS Energy Lett. 10 (2024) 128-132.
    [119]
    D. Jin, A. Chen, B.-L. Lin, J. Am. Chem. Soc. 146 (2024) 12320-12323.
    [120]
    X. Fu, I. Chorkendorff, Sci. China Chem. 67 (2024) 3510-3514.
    [121]
    S. Li, X. Fu, J.K. Noerskov, I. Chorkendorff, Nat. Energy 9 (2024) 1344-1349.
    [122]
    D. Krishnamurthy, N. Lazouski, M.L. Gala, K. Manthiram, V. Viswanathan, ACS Cent. Sci. 7 (2021) 2073-2082.
    [123]
    S. Li, Y. Zhou, X. Fu, J.B. Pedersen, M. Saccoccio, S.Z. Andersen, K. Enemark-Rasmussen, P.J. Kempen, C.D. Damsgaard, A. Xu, R. Sazinas, J.B.V. Mygind, N.H. Deissler, J. Kibsgaard, P.C.K. Vesborg, J.K. Norskov, I. Chorkendorff, Nature 629 (2024) 92-97.
    [124]
    S. Nagaishi, R. Hayashi, A. Hirata, R. Sagara, J. Kubota, Sustain. Energy Fuels 8 (2024) 914-926.
    [125]
    X. Fu, A. Xu, J.B. Pedersen, S. Li, R. Sazinas, Y. Zhou, S.Z. Andersen, M. Saccoccio, N.H. Deissler, J.B.V. Mygind, J. Kibsgaard, P.C.K. Vesborg, J.K. Noerskov, I. Chorkendorff, Nat. Commun. 15 (2024) 2417.
    [126]
    X. Fu, S. Li, N.H. Deissler, J.B.V. Mygind, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 9 (2024) 3790-3795.
    [127]
    E.J. Mcshane, V.A. Niemann, P. Benedek, X. Fu, A.C. Nielander, I. Chorkendorff, T.F. Jaramillo, M. Cargnello, ACS Energy Lett. 8 (2023) 4024-4032.
    [128]
    Y. Hou, D. Deng, Joule 7 (2023) 1682-1683.
    [129]
    X. Cai, Z. Shadike, X. Cai, X. Li, L. Luo, L. An, J. Yin, G. Wei, F. Yang, S. Shen, J. Zhang, Energy Environ. Sci. 16 (2023) 3063-3073.
    [130]
    X. Fu, Mater. Today Catal. 3 (2023).
    [131]
    V. Rosca, M. Duca, M.T. De Groot, M.T. Koper, Chem. Rev. 109 (2009) 2209-2244.
    [132]
    L. Ouyang, J. Liang, Y. Luo, D. Zheng, S. Sun, Q. Liu, M.S. Hamdy, X. Sun, B. Ying, Chin. J. Catal. 50 (2023) 6-44.
    [133]
    I. Garagounis, A. Vourros, D. Stoukides, D. Dasopoulos, M. Stoukides, Membranes 9 (2019) 112.
    [134]
    O. Stepan, B. Stverak, Collect. Czech. Chem. Commun. 36 (1971) 2358-2361.
    [135]
    J. Almquist, E. Crittenden, Ind. Eng. Chem. 18 (1926) 1307-1309.
    [136]
    G. Bridger, G. Pole, A. Beinlich, H. Thompson, Chem. Eng. Prog. 43 (1947) 291-302.
    [137]
    L. Czekajlo, Z. Lendzion-Bielun, Catal. Today 286 (2017) 114-117.
    [138]
    Y. Xiujin, L. Bingyu, L. Jianxin, W. Rong, W. Kemei, J. Rare Earth 26 (2008) 711-716.
    [139]
    N. Saadatjou, A. Jafari, S. Sahebdelfar, Chem. Eng. Commun. 202 (2015) 420-448.
    [140]
    K. Narasimharao, P. Seetharamulu, K.R. Rao, S.N. Basahel, J. Mol. Catal. A: Chem. 411 (2016) 157-166.
    [141]
    H. Bielawa, O. Hinrichsen, A. Birkner, M. Muhler, Angew. Chem. Int. Ed. 40 (2001) 1061-1063.
    [142]
    Q. Wang, J. Guo, P. Chen, J. Energy. Chem. 36 (2019) 25-36.
    [143]
    R. Jayarathna, T. Onsree, S. Drummond, J. Naglic, J. Lauterbach, J. Mater. Chem. A 12 (2024) 3046-3060.
    [144]
    T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, H. Hosono, J. Am. Chem. Soc. 142 (2020) 14374-14383.
    [145]
    L. Li, T. Zhang, J. Cai, H. Cai, J. Ni, B. Lin, J. Lin, X. Wang, L. Zheng, C.-T. Au, J. Catal. 389 (2020) 218-228.
    [146]
    C.D. Zeinalipour-Yazdi, J.S. Hargreaves, C.R.A. Catlow, J. Phys. Chem. C. 122 (2018) 6078-6082.
    [147]
    L. Bai, F. Franco, J. Timoshenko, C. Rettenmaier, F. Scholten, H.S. Jeon, A. Yoon, M. RuScher, A. Herzog, F.T. Haase, J. Am. Chem. Soc. 146 (2024) 9665-9678.
    [148]
    H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H. Wang, A.W. Robertson, Chem 5 (2019) 204-214.
    [149]
    Y. Yao, S. Zhu, H. Wang, H. Li, M. Shao, Angew. Chem. 132 (2020) 10565-10569.
    [150]
    D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Adv. Mater. 29 (2017) 1604799.
    [151]
    B.H. Ko, B. Hasa, H. Shin, Y. Zhao, F. Jiao, J. Am. Chem. Soc. 144 (2022) 1258-1266.
    [152]
    J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 9 (2018) 1795.
    [153]
    L. Yang, H. Han, L. Sun, J. Wu, M. Wang, Materials 16 (2023) 7647.
    [154]
    Z.-Y. Niu, L. Jiao, T. Zhang, X.-M. Zhao, X.-F. Wang, Z. Tan, L.-Z. Liu, S. Chen, X.-Z. Song, ACS Appl. Mater. Interfaces 14 (2022) 55559-55567.
    [155]
    H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 30 (2018) 1803694.
    [156]
    F. Rezai, N.E. Sahin, S. Laesaa, J. Catalano, E. Drazevic, Energy Technol. 11 (2023) 2300410.
    [157]
    X. Dong, S. Zhu, H. Li, Int. J. Hydrogen Energy 143 (2025) 286-306.
    [158]
    A. Salehabadi, J. Zanganeh, B. Moghtaderi, Int. J. Hydrogen Energy 63 (2024) 828-843.
    [159]
    S. Perego, L. Bonati, S. Tripathi, M. Parrinello, ACS Catal. 14 (2024) 14652-14664.
    [160]
    P. Xiong, J. Li, Z. Xu, Y. Lin, R.D. Bennett, Y. Zhang, W.M. Tu, Y. Zhu, Y.L. Soo, T.S. Wu, M.M. Li, Adv. Mater. (2025) e2502034.
    [161]
    Z. Bao, D. Li, Z. Wang, Y. Wen, L. Jin, H. Hu, Fuel 373 (2024) 132346.
    [162]
    S.-J. Kim, T.S. Nguyen, J. Mahmood, C.T. Yavuz, Chem. Eng. J. 463 (2023) 142474.
    [163]
    C. Chen, K. Wu, H. Ren, C. Zhou, Y. Luo, L. Lin, C. Au, L. Jiang, Energy Fuels 35 (2021) 11693-11706.
    [164]
    H. Fang, D. Liu, Y. Luo, Y. Zhou, S. Liang, X. Wang, B. Lin, L. Jiang, ACS Catal. 12 (2022) 3938-3954.
    [165]
    S. Brunauer, K.S. Love, R.G. Keenan, J. Am. Chem. Soc. 64 (1942) 751-758.
    [166]
    M.C. Bradford, P.E. Fanning, M.A. Vannice, J. Catal. 172 (1997) 479-484.
    [167]
    P. Han, Y. Du, H. Yang, N. Yan, ACS Catal. 15 (2025) 9246-9256.
    [168]
    A. Gunnarson, A. Cao, O.F. Sloth, M. Varon, R. Bueno Villoro, T. Veile, C.D. Damsgaard, C. Frandsen, J.K. Noerskov, I. Chorkendorff, Energy Environ. Sci. 17 (2024) 9313-9322.
    [169]
    A. Boisen, S. Dahl, J.K. Noerskov, C.H. Christensen, J. Catal. 230 (2005) 309-312.
    [170]
    P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Nat. Commun. 10 (2019) 4011.
    [171]
    J.C. Ganley, F. Thomas, E. Seebauer, R.I. Masel, Catal. Lett. 96 (2004) 117-122.
    [172]
    S. Henpraserttae, S. Charojrochkul, L. Lawtrakul, P. Toochinda, ChemistrySelect 3 (2018) 11842-11850.
    [173]
    A. Chellappa, C. Fischer, W. Thomson, Appl. Catal., A 227 (2002) 231-240.
    [174]
    K. Hashimoto, N. Toukai, J. Mol. Catal. A: Chem. 161 (2000) 171-178.
    [175]
    I. Lucentini, G.G. Colli, C.D. Luzi, I. Serrano, O.M. Martinez, J. Llorca, Appl. Catal. B: Environ. 286 (2021) 119896.
    [176]
    T. Su, B. Guan, J. Zhou, C. Zheng, J. Guo, J. Chen, Y. Zhang, Y. Yuan, W. Xie, N. Zhou, Energy Fuels 37 (2023) 8099-8127.
    [177]
    M. El-Shafie, S. Kambara, Y. Hayakawa, Catal. Today 397-399 (2022) 103-112.
    [178]
    J. Cha, Y.S. Jo, H. Jeong, J. Han, S.W. Nam, K.H. Song, C.W. Yoon, Appl. Energy 224 (2018) 194-204.
    [179]
    I. Lucentini, A. Casanovas, J. Llorca, Int. J. Hydrogen Energy 44 (2019) 12693-12707.
    [180]
    J. Zhang, H. Xu, W. Li, Appl. Catal., A 296 (2005) 257-267.
    [181]
    K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Appl. Catal., A 505 (2015) 77-85.
    [182]
    K. Miyashita, K. Ogasawara, M. Miyazaki, H. Abe, Y. Niwa, H. Kato, H. Hosono, M. Kitano, NPG Asia Mater. 16 (2024) 54.
    [183]
    S. Sayas, N. Morlanes, S.P. Katikaneni, A. Harale, B. Solami, J. Gascon, Catal. Sci. Technol. 10 (2020) 5027-5035.
    [184]
    X. Ju, L. Liu, X. Zhang, J. Feng, T. He, P. Chen, ChemCatChem 11 (2019) 4161-4170.
    [185]
    M. Zhang, H. Li, X. Duan, P. Zou, G. Jeerh, B. Sun, S. Chen, J. Humphreys, M. Walker, K. Xie, S. Tao, Adv. Sci. 8 (2021) 2101299.
    [186]
    M. Zhang, J. Zhang, G. Jeerh, P. Zou, B. Sun, M. Walker, K. Xie, S. Tao, J. Mater. Chem. A 10 (2022) 18701-18713.
    [187]
    D.-K. Lim, A.B. Plymill, H. Paik, X. Qian, S. Zecevic, C.R.I. Chisholm, S.M. Haile, Joule 4 (2020) 2338-2347.
    [188]
    X. Ding, Y. Ji, H. Huang, J. Huang, S. Chen, C. Yang, F. Li, M. Luo, Chem Catal. 4 (2024).
    [189]
    P. Babar, G.G. Botte, ACS Sustain. Chem. Eng. 12 (2024) 13030-13047.
    [190]
    J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C. 119 (2015) 14692-14701.
    [191]
    L.A. Diaz, A. Valenzuela-Muniz, M. Muthuvel, G.G. Botte, Electrochim. Acta 89 (2013) 413-421.
    [192]
    A.O. Elnabawy, J.A. Herron, S. Karraker, M. Mavrikakis, J. Catal. 397 (2021) 137-147.
    [193]
    D. Mateo, A. Sousa, M. Zakharzhevskii, J. Gascon, Green Chem. 26 (2024) 1041-1061.
    [194]
    J. Arroyo-Caire, M.A. Diaz-Perez, M.A. Lara-Angulo, J.C. Serrano-Ruiz, Nanomaterials 13 (2023) 2914.
    [195]
    H.M. Vieri, M.-C. Kim, A. Badakhsh, S.H. Choi, Energies 17 (2024) 441.
    [196]
    Z. Xie, E. Huang, S. Garg, S. Hwang, P. Liu, J.G. Chen, Nat. Catal. 7 (2024) 98-109.
    [197]
    B.M. Tackett, E. Gomez, J.G. Chen, Nat. Catal. 2 (2019) 381-386.
    [198]
    D. Ye, S.C.E. Tsang, Nat. Synth. 2 (2023) 612-623.
    [199]
    C.G. Yiokari, G.E. Pitselis, D.G. Polydoros, A.D. Katsaounis, C.G. Vayenas, J. Phys. Chem. A. 104 (2000) 10600-10602.
    [200]
    Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev. 257 (2013) 2551-2564.
    [201]
    A. Skodra, M. Stoukides, Solid State Ionics 180 (2009) 1332-1336.
    [202]
    Z. Lei, J. Jing, J. Pang, R. Hu, X. Shi, Z. Yang, S. Peng, Int. J. Hydrogen Energy 45 (2020) 8041-8051.
    [203]
    M. Ferree, S. Gunduz, J. Kim, R. Larosa, Y. Khalifa, A.C. Co, U.S. Ozkan, ACS Sustain. Chem. Eng. 11 (2023) 5007-5013.
    [204]
    N. Shimoda, Y. Kobayashi, Y. Kimura, G. Nakagawa, S. Satokawa, J. Ceram. Soc. Jpn. 125 (2017) 252-256.
    [205]
    V. Maslova, E. Fourre, G. Veryasov, N. Nesterenko, A. Grishin, C. Louste, M. Nassar, N. Guignard, S. Arrii, C. Batiot-Dupeyrat, ChemCatChem 15 (2023) e202201626.
    [206]
    P. Singh, Q. Li, Y. Liu, F. Che, ACS Catal. 15 (2025) 7690-7699.
    [207]
    M.L.T. Trivino, S. Doi, Y.S. Kang, C.U. Lee, Y. Sekine, J.G. Seo, Chem. Eng. J. 476 (2023) 146715.
    [208]
    H. Maleki, V. Bertola, Next Energy 8 (2025) 100324.
    [209]
    L.C. Caballero, N.E. Thornburg, M.M. Nigra, Chem. Sci. 13 (2022) 12945-12956.
    [210]
    J. Kim, D. Jang, J. Choi, J. Maeng, H.H. Shin, T. Park, W.B. Kim, Catalysts 13 (2023).
    [211]
    H. Tang, K. Geng, L. Wu, J. Liu, Z. Chen, W. You, F. Yan, M.D. Guiver, N. Li, Nat. Energy 7 (2022) 153-162.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return