Turn off MathJax
Article Contents
Hao Xiu, Fan Fan, Pan An, Mengshen Zhang, Yuting Wang, Yongpeng Cui, Yajun Wang, Guiyuan Jiang, Chunming Xu. Bioinspired Hierarchical Nanostructured CuBi2O4/CuO Heterojunction Photocathode for Enhanced Performance in Photoelectrochemical Water Splitting. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.016
Citation: Hao Xiu, Fan Fan, Pan An, Mengshen Zhang, Yuting Wang, Yongpeng Cui, Yajun Wang, Guiyuan Jiang, Chunming Xu. Bioinspired Hierarchical Nanostructured CuBi2O4/CuO Heterojunction Photocathode for Enhanced Performance in Photoelectrochemical Water Splitting. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.016

Bioinspired Hierarchical Nanostructured CuBi2O4/CuO Heterojunction Photocathode for Enhanced Performance in Photoelectrochemical Water Splitting

doi: 10.1016/j.gee.2025.12.016
  • The development of high-performance photocathode materials is crucial for solar hydrogen production, but their efficiency is often limited by poor charge separation, inefficient interfacial transfer, and sluggish surface reactions. In this work, a coral-like hierarchical nanostructured CuBi2O4/CuO heterojunction photocathode was designed to simultaneously overcome these limitations by synergistic adjusting the morphology and bandgap alignment. The optimized photocathode, featuring finer nanoscale microtentacles, substantially enhances the number of reactive sites, resulting in a significant enhanced interfacial electric field, which is 1.4 times greater than that of pure CuBi2O4. The CuBi2O4/CuO heterojunction photocathode generates a photocurrent density of 2.88 mA·cm-2 at 0.6 V vs. RHE, which is 4.43 times higher than that of a pure CuBi2O4 photocathode, and the incident photo-current efficiency reaches 18% at 400 nm. The charge transfer mechanism was elucidated using synchronous illumination X-ray photoelectron spectroscopy (SI-XPS), in-situ Kelvin probe force microscopy (SI-KPFM) and density functional theory (DFT) calculations, which directly observed the transfer of photogenerated electrons from CuBi2O4 to CuO and confirmed the enhancement of the interfacial electric field intensity induced by the S-scheme heterojunction. This work integrates bionic strategies into PEC applications, offering a valuable reference for the structural design of photoelectrodes and potentially advancing the efficiency of photoelectrochemical systems.

     

  • loading
  • [1]
    Y. Li, Y. Liu, D. Xing, J. Wang, L. Zheng, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Appl. Catal., B 285 (2021) 119855.
    [2]
    T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520-7535.
    [3]
    W. Wang, M. Xu, X. Xu, W. Zhou, Z. Shao, Angew. Chem. Int. Ed. 59 (2020) 136-152.
    [4]
    X. Li, Q. Liu, F. Deng, J. Huang, L. Han, C. He, Z. Chen, Y. Luo, Y. Zhu, Appl. Catal., B 314 (2022) 121502.
    [5]
    S. Zhao, B. Liu, G. Zhang, Q. Wang, Y. Cai, Y. Tong, S. Wang, P. Zhang, T. Wang, J. Gong, Transactions. Tianjin. Univ. 29 (2023) 473-481.
    [6]
    H. Lu, L. Wang, Appl. Catal., B 345 (2024) 123707.
    [7]
    Z. Liu, J. Ma, M. Hong, R. Sun, ACS Catal. 13 (2023) 2106-2117.
    [8]
    J.R. Tian, Z.X. Zhao, H.Q. Ling, Z.Q. Zhang, H. Ablat, X. Nurmamat, Int. J. Hydrogen Energy 87 (2024) 686-698.
    [9]
    M. Fritz, S. Rupp, C.I. Kiene, S. Kisan, J. Telser, C. Wurtele, V. Krewald, S. Schneider, Angew. Chem. Int. Ed. 61 (2022) e202205922.
    [10]
    P. Li, Y. Gao, A.G.L. Borthwick, P. Li, H. Zhang, F. Chen, L. Chen, F. Li, W. Liu, Angew. Chem. Int. Ed. 64 (2025) e202503097.
    [11]
    S. Chu, B. Zhang, X. Zhao, H.S. Soo, F. Wang, R. Xiao, H. Zhang, Adv. Energy Mater. 12 (2022) 2200435.
    [12]
    C. Qin, Y. Yang, X. Wu, L. Chen, Z. Liu, L. Tang, L. Lyu, D. Huang, D. Wang, C. Zhang, X. Yuan, W. Liu, H. Wang, Nat. Commun. 14 (2023) 6740.
    [13]
    C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 46 (2017) 4645-4660.
    [14]
    S. Yoshino, T. Takayama, Y. Yamaguchi, A. Iwase, A. Kudo, Acc. Chem. Res. 55 (2022) 966-977.
    [15]
    Z. Wei, S. Zhao, W. Li, X. Zhao, C. Chen, D.L. Phillips, Y. Zhu, W. Choi, ACS Catal. 12 (2022) 11436-11443.
    [16]
    S. Chen, T. Takata, K. Domen, Nat. Rev. Mater 2 (2017) 17050.
    [17]
    X. Tao, Y. Zhao, S. Wang, C. Li, R. Li, Chem. Soc. Rev. 51 (2022) 3561-3608.
    [18]
    R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649.
    [19]
    S. Lin, S. Cheng, B. Song, X. Zhong, X. Lin, W. Li, L. Li, Y. Zhang, H. Zhang, Z. Ji, M. Cai, Y. Zhuang, X. Shi, L. Lin, L. Wang, Z. Wang, X. Liu, S. Yu, P. Zeng, H. Hao, Q. Zou, C. Chen, Y. Li, Y. Wang, C. Xu, S. Meng, X. Xu, J. Wang, H. Yang, D.A. Campbell, N.R. Sturm, S. Dagenais-Bellefeuille, D. Morse, Science 350 (2015) 691-694.
    [20]
    E. Bollati, C. D’angelo, R. Alderdice, M. Pratchett, M. Ziegler, J. Wiedenmann, Curr. Biol. 30 (2020) 2433-2445.e3.
    [21]
    C.R. Voolstra, Curr. Biol. 30 (2020) R768-R770.
    [22]
    J.D. Osorio-Cano, A.F. Osorio, J.C. Alcerreca-Huerta, H. Oumeraci, J. Fluids Struct. 88 (2019) 31-47.
    [23]
    D. Liu, Y. Kuang, Adv. Mater. 36 (2024) 2311692.
    [24]
    K. Sivula, R. Van De Krol, Nat. Rev. Mater 1 (2016) 15010.
    [25]
    D. Kang, J.C. Hill, Y. Park, K.-S. Choi, Chem. Mater. 28 (2016) 4331-4340.
    [26]
    S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, Chem. Mater. 28 (2016) 4231-4242.
    [27]
    C. Li, J. He, Y. Xiao, Y. Li, J.-J. Delaunay, Energy Environ. Sci. 13 (2020) 3269-3306.
    [28]
    Z. Zhang, S.A. Lindley, D. Guevarra, K. Kan, A. Shinde, J.M. Gregoire, W. Han, E. Xie, J.A. Haber, J.K. Cooper, Adv. Funct. Mater. 30 (2020) 2000948.
    [29]
    Y. Xu, J. Jian, F. Li, W. Liu, L. Jia, H. Wang, J. Mater. Chem. A 7 (2019) 21997-22004.
    [30]
    V. Kumaravel, J. Bartlett, S.C. Pillai, ACS Energy Lett. 5 (2020) 486-519.
    [31]
    J. Luo, L. Steier, M.-K. Son, M. Schreier, M.T. Mayer, M. Gratzel, Nano Lett. 16 (2016) 1848-1857.
    [32]
    G. Liu, G. Ma, H. Mu, J. Li, F. Li, M. Zhu, J. Zhang, Sep. Purif. Technol. 358 (2025) 130319.
    [33]
    Z. Lv, G. Ma, H. Mu, J. Guo, M. Zhu, J. Li, F. Li, J. Colloid Interface Sci. 692 (2025) 137492.
    [34]
    S.A. Monny, L. Zhang, Z. Wang, B. Luo, M. Konarova, A. Du, L. Wang, J. Mater. Chem. A 8 (2020) 2498-2504.
    [35]
    N.T. Hahn, V.C. Holmberg, B.A. Korgel, C.B. Mullins, J. Phys. Chem. C 116 (2012) 6459-6466.
    [36]
    G. Seo, B. Kim, S.W. Hwang, S.S. Shin, I.S. Cho, Nano Energy 80 (2021) 105568.
    [37]
    A. Song, P. Plate, A. Chemseddine, F. Wang, F.F. Abdi, M. Wollgarten, R. van de Krol, S.P. Berglund, J. Mater. Chem. A 7 (2019) 9183-9194.
    [38]
    H. Xiu, T. Gao, N. An, Y. Wang, Y. Zhou, X. Qi, D. Liu, Y. Kuang, ACS Appl. Energy Mater. 5 (2022) 5127-5135.
    [39]
    Q. Wang, H. Liu, C. Fan, P. Tang, B. Li, L. Zhang, J. Shi, Adv. Funct. Mater. 35 (2025) 2502281.
    [40]
    N. Xu, F. Li, L. Gao, H. Hu, Y. Hu, X. Long, J. Ma, J. Jin, ACS Sustain. Chem. Eng. 6 (2018) 7257-7264.
    [41]
    M. Gopannagari, K.a.J. Reddy, S. Inae, H.S. Bae, J. Lee, T.G. Woo, A.P. Rangappa, D.P. Kumar, D.A. Reddy, T.K. Kim, Adv. Sustain. Syst. 7 (2023) 2300085.
    [42]
    W. Yang, R.R. Prabhakar, J. Tan, S.D. Tilley, J. Moon, Chem. Soc. Rev. 48 (2019) 4979-5015.
    [43]
    J. Miao, Y. Yang, P. Cui, C. Ru, K. Zhang, Adv. Funct. Mater. 34 (2024) 2406443.
    [44]
    K. Jiang, J. Zhang, C. Zhong, F.R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S.-H. Jang, J. Yu, X. Deng, H. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. Zhang, A.K.Y. Jen, Nat. Energy 7 (2022) 1076-1086.
    [45]
    M. Sayed, K. Qi, X. Wu, L. Zhang, H. Garcia, J. Yu, Chem. Soc. Rev. 54 (2025) 4874-4921.
    [46]
    L. Zhang, J. Zhang, J. Yu, H. Garcia, Nat. Rev. Chem. 9 (2025) 328-342.
    [47]
    F. Qiao, Nano Res. Energy. 4 (2025) e9120132.
    [48]
    A. Song, I. Levine, R. Van De Krol, T. Dittrich, S.P. Berglund, Chem. Sci 11 (2020) 11195-11204.
    [49]
    Q. Zhang, B. Zhai, Z. Lin, X. Zhao, P. Diao, J. Phys. Chem. C. 125 (2021) 1890-1901.
    [50]
    A.S. Mary, C. Murugan, A. Pandikumar, J. Colloid Interface Sci. 608 (2022) 2482-2492.
    [51]
    X. Wang, X. Wang, H. Zhang, J. Zhang, Z. Li, X. Wang, J. Xu, D. Cao, J. Li, C. Lu, Process Saf. Environ. Prot. 188 (2024) 1292-1305.
    [52]
    R. S. Moakhar, S.M. Hosseini-Hosseinabad, S. Masudy-Panah, A. Seza, M. Jalali, H. Fallah-Arani, F. Dabir, S. Gholipour, Y. Abdi, M. Bagheri-Hariri, N. Riahi-Noori, Y.-F. Lim, A. Hagfeldt, M. Saliba, Adv. Mater. 33 (2021) 2007285.
    [53]
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-278.
    [54]
    J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Appl. Catal., B 240 (2019) 1-8.
    [55]
    H. Zare Asl, S. Rozati, Appl. Phys. A-Mater. Sci. Process. 47 (2018) 3568-3576.
    [56]
    J. Feng, Z. Wang, X. Zhao, G. Yang, B. Zhang, Z. Chen, Y. Huang, J. Phys. Chem. C. 122 (2018) 9773-9782.
    [57]
    C. Zhang, Z. Guo, Y. Tian, C. Yu, K. Liu, L. Jiang, Nano Res. Energy. 2 (2023) e9120063.
    [58]
    X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Ba, H. Zhang, L. Zhang, X. Zhao, J. Leng, S. Jin, W. Zhang, W. Zheng, S.K. Ravi, Z. Jiang, X. Cui, J. Yu, Adv. Mater. 35 (2023) 2209141.
    [59]
    Y. Xu, J. Jian, G. Su, W. Liu, S. Wang, Y. Shuang, F. Li, L. Jia, D. Friedrich, R. van de Krol, H. Wang, Adv. Funct. Mater. 33 (2023) 2213568.
    [60]
    C.-X. Zhao, J.-N. Liu, B.-Q. Li, D. Ren, X. Chen, J. Yu, Q. Zhang, Adv. Funct. Mater. 30 (2020) 2003619.
    [61]
    J. Li, L. Cai, J. Shang, Y. Yu, L. Zhang, Adv. Mater. 28 (2016) 4059-4064.
    [62]
    J. Li, G. Zhan, Y. Yu, L. Zhang, Nat. Commun. 7 (2016) 11480.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (36) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return