Turn off MathJax
Article Contents
Pengtao Fang, Haitao Song, Zhijian Da. Upcycling FCC slurry via in-situ SiCl4-catalyzed polycondensation: Constructing core-shell Si@C composites for high-stability lithium storage. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.014
Citation: Pengtao Fang, Haitao Song, Zhijian Da. Upcycling FCC slurry via in-situ SiCl4-catalyzed polycondensation: Constructing core-shell Si@C composites for high-stability lithium storage. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.014

Upcycling FCC slurry via in-situ SiCl4-catalyzed polycondensation: Constructing core-shell Si@C composites for high-stability lithium storage

doi: 10.1016/j.gee.2025.12.014
  • Petroleum-based polycyclic aromatic hydrocarbons (PAHs), as by-products of petroleum, offer the advantages of abundant availability and high carbon content, making them ideal high-quality raw materials for the fabrication of carbon anode materials in lithium batteries (LIBs). This study presents a novel, dual-purpose strategy to fabricate hollow core-shell silicon-carbon composites (Si@Void@Cx) via the in-situ catalytic polycondensation of Fluid Catalytic Cracking (FCC) slurry. Unlike traditional synthesis routes employing metallic Lewis acids (e.g., AlCl3, FeCl3), silicon tetrachloride (SiCl4) was used as a cleaner, bifunctional catalyst that avoids metallic contamination while facilitating the precise polymerization of the carbon matrix. This approach not only circumvents the integration of heteroatoms via the catalyst, but also simplifies the process flow, reduces energy consumption, and contributes to a greener, sustainable technology by enhancing the high-value utilization of FCC, benefiting both resource conservation and environmental protection. The optimized composite (Si@Void@C1) delivers a robust electrochemical performance, exhibiting a specific capacity of 601.9 mAh/g and maintaining electrode integrity with a negligible thickness expansion of only 7% after 1000 cycles. Si@Void@C1 capitalizes on the well-dispersed silicon (Si) nanoparticles and the intact hollow core-shell structure to effectively buffer against the volume expansion stress of Si, thus maintaining electrode structural integrity and achieving superior cycling performance. This work provides a scalable, sustainable pathway for transforming petrochemical byproducts into advanced energy storage materials.

     

  • loading
  • [1]
    Z.K. Zhang, Y.J. Li, X.J. Yin, S.W. Li, B. Li, N.N. Zhao, J. Zhu, L. Dai, L. Wang, Z.X. He, Z.M. Feng, Green Energy Environ. 10 (2025) 2029-2046.
    [2]
    X. Zhu, W.B. Feng, Y.M. Huang, Green Energy Environ. 10 (2025) 609-618.
    [3]
    L. Cheng, Y.J. Zhu, Y.X. Zhang, H.P. Yu, S.D. Xie, D.D. Li, H. Li, S.Y. Zheng, Green Energy Environ. 10 (2025) 1295-1310.
    [4]
    Y.X. Shi, Z.Y. Guo, C.H. Wang, M.Z. Gao, X.T. Lin, H. Duan, Y.G. Wang, X.L. Sun, Green Energy Environ. 10 (2025) 183-192.
    [5]
    X.L. Ma, D. Sun, M.L. Zhang, M. Wang, Z. Ma, Y.K. Sun, Z.C. Li, F.Z. Zheng, K. Zhao, Y. Yang, C.B. Lu, C.M. Xu, Z.H. Xiao, Y.F. Li, ACS Sustainable Chem. Eng. 12 (2024) 12542-12552.
    [6]
    B. Sun, L.L. Kuang, G.Y. Li, S. Yang, D.M. Zhang, C.Z. Zhang, Q. Zhang, S.B. Ni, Chem. Eng. J. 484 (2024) 149609.
    [7]
    S. Yi, Z.L. Yan, X.D. Li, Z. Wang, P.P. Ning, J.W. Zhang, J.L. Huang, D.R. Yang, N. Du, Chem. Eng. J. 473 (2023) 145161.
    [8]
    B.X. Shen, N. Fu, Y.W. Chen, W. Shao, Y.R. Yan, J. Huang, Z.L. Yang, Chem. Eng. J. 455 (2023) 140820.
    [9]
    H. Dong, J. Wang, P. Wang, H. Ding, R. Song, N.S. Zhang, D.N. Zhao, L.J. Zhang, S.Y. Li, J. Energy Chem. 64 (2022) 190-200.
    [10]
    M. Yoshio, S. Kugino, N. Dimov, J. Power Sources 153 (2006) 375-379.
    [11]
    L. Xu, Y. Yang, Y. Xiao, W.L. Cai, Y.X. Yao, X.R. Chen, C. Yan, H. Yuan, J.Q. Huang, J. Energy Chem. 67 (2022) 255-262.
    [12]
    Y.T. Wang, Y.F. Li, J.L. Chai, Q.M. Li, J.K. Du, Y.C. Rui, B. Tang, L. Jiang, Chem. Eng. J. 481 (2024) 148485.
    [13]
    Z.Q. Fan, S.S. Zheng, S. He, Y.Y. Ye, J.H. Liang, A.D. Shi, Z.L. Wang, Z.F. Zheng, Diamond Relat. Mater. 107 (2020) 107898.
    [14]
    N. Liu, H. Wu, M.T. Mcdowell, Y. Yao, C.M. Wang, Y. Cui, Nano Lett. 12 (2012) 3315-3321.
    [15]
    Z.Q. Fan, Y.T. Wang, S.S. Zheng, K. Xu, J.Y. Wu, S. Chen, J.H. Liang, A.D. Shi, Z.L. Wang, Energy Storage Mater. 39 (2021) 1-10.
    [16]
    W. Zhang, S. Fang, N. Wang, J. Zhang, B. Shi, Z. Yu, J. Yang, Inorg. Chem. Front. 7 (2020) 2487-2496.
    [17]
    Y.B. Wei, Y.K. Zhu, L. Wang, X.M. He, Green Energy Environ. 10 (2025) 1892-1900.
    [18]
    X. Xue, X. Liu, B. Lou, Y.X. Yang, N. Shi, F.S. Wen, X.J. Yang, D. Liu, J. Energy Chem. 84 (2023) 292-302.
    [19]
    Y.F. Yao, X.Y. Xu, H.Y. Zhao, Y.L. Tong, Y.N. Li, Ceram. Int. 48 (2022) 12217-12227.
    [20]
    F.Q. Chen, J.W. Han, D.B. Kong, Y.F. Yuan, J. Xiao, S.C. Wu, D.M. Tang, Y.Q. Deng, W. Lv, J. Lu, F.Y. Kang, Q.H. Yang, Natl. Sci. Rev. 8 (2021) 77-87.
    [21]
    G.J. Zhu, D.L. Chao, W.L. Xu, M.H. Wu, H.J. Zhang, ACS Nano 15 (2021) 15567-15593.
    [22]
    D. Huang, R.X. Tan, L. Liu, C. Ye, S.P. Zhu, Z. Fan, P. Zhang, H. Wu, F. Han, H.B. Liu, J.S. Liu, J. Eur. Ceram. Soc. 41 (2021) 4438-4446.
    [23]
    Q. Man, Y. An, C. Liu, H. Shen, S. Xiong, J. Feng, J. Energy Chem. 76 (2023) 576-600.
    [24]
    X.Q. Shen, Z.W. Li, R. Zhang, Y.W. Yu, P.L. Yu, J. Yu, ACS Appl. Mater. Interfaces 16 (2024) 69282-69294.
    [25]
    T.H. Hwang, Y.M. Lee, B.S. Kong, J.S. Seo, J.W. Choi, Nano Lett. 12 (2012) 802-807.
    [26]
    H. Dong, X.L. Fu, J. Wang, P. Wang, H. Ding, R. Song, S.M. Wang, R.R. Li, S.Y. Li, Carbon 173 (2021) 687-695.
    [27]
    Y. Hwa, W.S. Kim, S.H. Hong, H.J. Sohn, Electrochim. Acta 71 (2012) 201-205.
    [28]
    J. Xie, L. Tong, L.W. Su, Y.W. Xu, L.B. Wang, Y.H. Wang, J. Power Sources 342 (2017) 529-536.
    [29]
    K. Feng, W. Ahn, G. Lui, H.W. Park, A.G. Kashkooli, G.P. Jiang, X.L. Wang, X.C. Xiao, Z.W. Chen, Nano Energy 19 (2016) 187-197.
    [30]
    G.P. Liu, W.Q. Jin, N.P. Xu, Chem. Soc. Rev. 44 (2015) 5016-5030.
    [31]
    W. Wang, P.N. Kumta, ACS Nano 4 (2010) 2233-2241.
    [32]
    L. Hu, B. Luo, C.H. Wu, P.F. Hu, L.Z. Wang, H.J. Zhang, J. Energy Chem. 32 (2019) 124-130.
    [33]
    I.C. Lewis, Carbon 18 (1980) 191-196.
    [34]
    X.W. Qu, P.P. Zuo, Y.M. Li, N. Li, W.Z. Shen, J. Fuel Chem. Technol. 50 (2022) 1259-1270.
    [35]
    K.E. Yoon, E.S. Lee, Y. Korai, I. Mochda, K. Yanagida, K. Tate, Carbon 32 (1994) 453-459.
    [36]
    Z.X. Hao, J.R. Feng, Y.Y. Liu, L.Q. Kang, B.L. Wang, J.W. Gu, L. Sheng, R.Y. Xu, S. Marlow, D.J.L. Brett, Y.H. Huang, F.R. Wang, J. Energy Chem. 66 (2022) 161-167.
    [37]
    K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025-1074.
    [38]
    P. Tarakeshwar, J.Y. Lee, K.S. Kim, The Journal of Physical Chemistry A 102 (1998) 2253-2255.
    [39]
    M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata, J. Electrochem. Soc. 152 (2005) 2089-2091.
    [40]
    Y. Zhang, R. Zhang, S. Chen, H. Gao, M. Li, X. Song, H.L. Xin, Z. Chen, Adv. Funct. Mater. 30 (2020) 1-10.
    [41]
    X.H. Huang, R.Q. Guo, Y. Lin, Y.Q. Cao, J.B. Wu, J. Energy Storage 87 (2024) 111374.
    [42]
    F. Di, Z.X. Wang, C. Ge, L.X. Li, X. Geng, C.G. Sun, H.M. Yang, W.M. Zhou, D.Y. Ju, B.G. An, F. Li, Journal of Materials Science & Technology 157 (2023) 1-10.
    [43]
    B. Goffe, J.P. Petitet, E. Froigneux, M. Moreau, J.N. Rouzaud, Spectrochim. Acta, Part A 59 (2003) 2267-2276.
    [44]
    A. Shchukarev, D. Korolkov, Cent. Eur. J. Chem. 2 (2004) 347-362.
    [45]
    C. Cavallari, M. Brunelli, S. Radescu, M. Dubois, N. Batisse, G.B.M. Vaughan, H.E. Fischer, V. Pischedda, Carbon 147 (2019) 1-8.
    [46]
    J.N. Rouzaud, A. Oberlin, C. Beny-Bassez, Thin Solid Films 105 (1983) 75-96.
    [47]
    S.X. Mei, S.G. Guo, B. Xiang, J.G. Deng, J.J. Fu, X.M. Zhang, Y. Zheng, B. Gao, P.K. Chu, K. Huo, J. Energy Chem. 69 (2022) 616-625.
    [48]
    F. Badaczewski, M.O. Loeh, T. Pfaff, S. Dobrotka, D. Wallacher, D. Clemens, J. Metz, B.M. Smarsly, Carbon 141 (2019) 169-181.
    [49]
    C. Lee, Y.J. Han, Y.D. Seo, K. Nakabayashi, J. Miyawaki, R. Santamaria, R. Menendez, S. Yoon, J. Jang, Carbon 103 (2016) 28-35.
    [50]
    X.L. Sun, W.P. Si, X.H. Liu, J.W. Deng, L.X. Xi, L.F. Liu, C.L. Yan, O.G. Schmidt, Nano Energy 9 (2014) 168-175.
    [51]
    L. Zhang, R. Rajagopalan, H.P. Guo, X.L. Hu, S.X. Dou, H.K. Liu, Adv. Funct. Mater. 26 (2016) 440-446.
    [52]
    W. Tan, L.N. Wang, Z.G. Lu, F. Yang, Z.H. Xu, Small 18 (2022) 2203102.
    [53]
    L. Cheng, Z.L. Wang, T.T. Wang, Y.T. Wu, X. Liu, Y. Zhang, J. Electroanal. Chem. 973 (2024) 118670.
    [54]
    Q.C. He, J.H. Jiang, J.L. Zhu, Z.Y. Pan, C.L. Li, M.Y. Yu, J.L. Key, P.K. Shen, J. Power Sources 448 (2020) 227568.
    [55]
    Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu, S.H. Feng, S.D. Li, L. Zhou, L.Q. Mai, Chem. Soc. Rev. 48 (2019) 285-309.
    [56]
    Z. Yang, H. Zhang, R.H. Jiang, X.D. Cheng, C.F. Jing, J. Luo, P.P. Jia, J. Yang, J. Energy Storage 135 (2025) 118400.
    [57]
    W.J. Zhang, J. Power Sources 196 (2011) 13-24.
    [58]
    X.H. Li, K. Xu, Y.J. Yu, C. Chen, H.J. Zhang, W. Lei, Electrochim. Acta 475 (2024) 143658.
    [59]
    X. Xue, J.M. Luo, L.Q. Kong, J.S. Zhao, Y. Zhang, H.M. Du, S. Chen, Y. Xie, RSC Adv. 11 (2021) 10688-10698.
    [60]
    A. Avila Cardenas, N. Herlin-Boime, C. Haon, L. Monconduit, Electrochim. Acta 475 (2024) 143691.
    [61]
    H. Wu, H. Wen, C. Wang, F.H. Li, Y.F. Chen, L.W. Su, L.B. Wang, Small 20 (2024) 2311779.
    [62]
    P. Xu, D.O. Guo, X.B. Lin, X.D. Wang, Z. Zhang, C. Zeng, M.D. Liao, Z.A. Su, Q.Z. Huang, M.Y. Zhang, J. Energy Storage 98 (2024).
    [63]
    P. Xu, X.D. Wang, D.R. Guo, C. Zeng, M.D. Liao, X.B. Hu, Q.Z. Huang, Z.A. Su, M.Y. Zhang, Diamond Relat. Mater. 143 (2024) 110936.
    [64]
    W.W. Li, J. Peng, H. Li, Z.Y. Wu, B.B. Chang, X.W. Guo, G.R. Chen, X.Y. Wang, J. Alloys Compd. 903 (2022) 163940.
    [65]
    Y. Liu, Y.J. Zhong, Z.H. Zeng, P. Zhang, H. Zhang, Z.Q. Zhang, F. Gao, X.D. Ma, M. Terrones, Y. Wang, Y.Q. Wang, ACS Appl. Mater. Interfaces 15 (2023) 54539-54549.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return