Turn off MathJax
Article Contents
Yudan Li, Xiaoqi Zhong, Zhengguo Zhang, Ziye Ling, Xiaoming Fang. Synergistically Enhanced Thermal and Mechanical Properties of CNT-Modified Docosane@SiO2 Nanocapsules for Advanced Thermal Energy Storage. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.012
Citation: Yudan Li, Xiaoqi Zhong, Zhengguo Zhang, Ziye Ling, Xiaoming Fang. Synergistically Enhanced Thermal and Mechanical Properties of CNT-Modified Docosane@SiO2 Nanocapsules for Advanced Thermal Energy Storage. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.012

Synergistically Enhanced Thermal and Mechanical Properties of CNT-Modified Docosane@SiO2 Nanocapsules for Advanced Thermal Energy Storage

doi: 10.1016/j.gee.2025.12.012
  • This study presents a novel strategy for synthesizing carbon nanotube (CNT)-modified n-docosane@SiO2 (C22@SiO2) phase change nanocapsules with simultaneously enhanced latent heat, thermal conductivity, and mechanical strength. A critical pretreatment step involving the ultrasonic dispersion of CNTs in tetraethyl orthosilicate (TEOS) for ≥3 hours was critical, enabling effective adsorption of TEOS onto CNT surfaces and thereby facilitating their co-encapsulation with C22 within SiO2 shells via interfacial polycondensation. Systematic optimization revealed that a 3-hour dispersion was essential for forming structurally intact capsules, achieving an encapsulation efficiency of 80.2% and a melting enthalpy (ΔHm) of 188.5 J·g-1. The optimal CNT loading of 0.05 g maximized core crystallinity (66.75%) and latent heat (ΔHm: 188.5 J·g-1 vs. 168.3 J·g-1 for unmodified capsules), while reducing the melting point by 2.4 °C due to molecular interactions between CNTs and C22, as confirmed by solid-state 1H NMR. The optimized capsules (denoted as P-CNT-0.05) exhibited a 36.8% higher thermal conductivity (0.52 W·m-1·K-1), a 338.9% increase in Young’s modulus (3964 MPa), near-zero leakage (0.88% mass loss after heating), and stable performance over 100 thermal cycles. This work provides a scalable route to multifunctional phase change nanocapsules with triply enhanced energy storage capacity, heat transfer efficiency, and mechanical durability, demonstrating great potential for advanced thermal management applications.

     

  • loading
  • [1]
    W. Liu, Y. Bie, T. Xu, A. Cichon, G. Krolczyk, Z. Li, J. Energy Storage 46 (2022) 103727.
    [2]
    D.S. Jayathunga, H.P. Karunathilake, M. Narayana, S. Witharana, Renew. Sust. Energ. Rev. 189 (2024) 113904.
    [3]
    N. Hamid, S.S. Khalifelu, M.M. Joybari, Z. Rahimi-Ahar, A. Babapoor, B. Mirzayi, A. Rahbar, J. Energy Storage 100 (2024) 113731.
    [4]
    G. Alva, L. Liu, X. Huang, G. Fang, Renew. Sust. Energ. Rev. 68 (2017) 693-706.
    [5]
    A. Bouhezza, A. Laouer, K.a.R. Ismail, H. Faraji, M.A. Khuda, M. Teggar, F.a.M. Lino, J.R. Henriquez, D. Rodriguez, J. Energy Storage 105 (2025) 114671.
    [6]
    B. Nie, A. Palacios, B. Zou, J. Liu, T. Zhang, Y. Li, Renew. Sust. Energ. Rev. 134 (2020) 110340.
    [7]
    R.A. Lawag, H.M. Ali, J. Energy Storage 55 (2022) 105602.
    [8]
    N. Zhang, Y. Yuan, X. Cao, Y. Du, Z. Zhang, Y. Gui, Adv. Eng. Mater. 20 (2018) 1700753.
    [9]
    K.W. Wang, T. Yan, W.G. Pan, J. Energy Storage 68 (2023) 107844.
    [10]
    E.M. Shchukina, M. Graham, Z. Zheng, D.G. Shchukin, Chem. Soc. Rev. 47 (2018) 4156-4175.
    [11]
    Y. Zhu, S. Liang, H. Wang, K. Zhang, X. Jia, C. Tian, Y. Zhou, J. Wang, Energy Conv. Manag. 119 (2016) 151-162.
    [12]
    A. Sari, C. Alkan, A. Karaipekli, Appl. Energy 87 (2010) 1529-1534.
    [13]
    T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, Z. Zhang, Appl. Energy 171 (2016) 113-119.
    [14]
    J.-F. Su, X.-Y. Wang, S. Han, X.-L. Zhang, Y.-D. Guo, Y.-Y. Wang, Y.-Q. Tan, N.-X. Han, W. Li, J. Mater. Chem. A 5 (2017) 23937-23951.
    [15]
    Y.-T. Huang, H. Zhang, X.-J. Wan, D.-Z. Chen, X.-F. Chen, X. Ye, X. Ouyang, S.-Y. Qin, H.-X. Wen, J.-N. Tang, J. Mater. Chem. A 5 (2017) 7482-7493.
    [16]
    G. Zhou, M. Hou, Y. Ren, Z. Jiang, N.-C. Lai, J. Energy Storage 72 (2023) 108458.
    [17]
    Z. Zhang, Y. Liu, W. Du, Z. Liang, F. Li, Y. Yong, Z. Li, J. Colloid Interface Sci. 632 (2023) 311-325.
    [18]
    X. Lu, R. Qian, X. Xu, M. Liu, Y. Liu, D. Zou, Nano Energy 124 (2024) 109520.
    [19]
    K. Zhang, J. Wang, H. Xie, Z. Guo, R. Gao, L. Cai, J. Therm. Anal. Calorim. 147 (2021) 2907-2916.
    [20]
    V. Pethurajan, S. Sivan, Chem. Eng. Process. 133 (2018) 12-23.
    [21]
    M. Li, M. Chen, Z. Wu, Appl. Energy 127 (2014) 166-171.
    [22]
    D.-Z. Chen, S.-Y. Qin, G.C.P. Tsui, C.-Y. Tang, X. Ouyang, J.-H. Liu, J.-N. Tang, J.-D. Zuo, Compos. Pt. B-Eng. 157 (2019) 239-247.
    [23]
    A.A. Mikhaylov, S. Sladkevich, A.G. Medvedev, P.V. Prikhodchenko, J. Gun, K.A. Sakharov, Z.J. Xu, V. Kulish, V.A. Nikolaev, O. Lev, ACS Appl. Mater. Interfaces 12 (2020) 16227-16235.
    [24]
    X. Meng, S. Qin, H. Fan, Z. Huang, J. Hong, X. Xu, X. Ouyang, D.-Z. Chen, Sol. Energy Mater. Sol. Cells 212 (2020) 110589.
    [25]
    X. Zhai, J. Wang, X. Zhang, H. Peng, Colloid Surf. A-Physicochem. Eng. Asp. 652 (2022) 129875.
    [26]
    H. Liu, J. Niu, X. Wang, D. Wu, Energy 188 (2019) 116075.
    [27]
    S. Li, Z. Lin, Z. Zhou, Y. Zhao, Z. Ling, Z. Zhang, X. Fang, Nanoscale 15 (2023) 3419-3429.
    [28]
    Y. Fang, H. Wei, X. Liang, S. Wang, X. Liu, X. Gao, Z. Zhang, Energy Fuel 30 (2016) 9652-9657.
    [29]
    S. Tahan Latibari, M. Mehrali, M. Mehrali, T.M. Indra Mahlia, H.S. Cornelis Metselaar, Energy 61 (2013) 664-672.
    [30]
    N.S.K. Abu Zaid, M.S. Nasser, S.A. Onaizi, J. Mol. Liq. 393 (2024) 123617.
    [31]
    L. Alexander, J. Mater. Sci. 6 (1971) 93-93.
    [32]
    M. Couzi, J.-L. Bruneel, D. Talaga, L. Bokobza, Carbon 107 (2016) 388-394.
    [33]
    M.V. Kharlamova, C. Kramberger, Nanomaterials 13 (2023) 640.
    [34]
    A.K. Patel, S.K. Mishra, K. Krishnamurthy, N. Suryaprakash, RSC Adv. 9 (2019) 32759-32770.
    [35]
    J. Li, Q. Chang, C. Xue, J. Yang, S. Hu, Carbon 203 (2023) 21-28.
    [36]
    H. Yang, W. Ma, X. Li, S. Yang, H. Tan, G. Sun, L. Kong, Y. Wang, W. Wang, J. Build. Eng. 102 (2025) 111995.
    [37]
    J. Tan, P.J. Meadows, D. Zhang, X. Chen, E. Lopez-Honorato, X. Zhao, F. Yang, T. Abram, P. Xiao, J. Nucl. Mater. 393 (2009) 22-29.
    [38]
    S. Cuenot, A. Fillaudeau, T. Briolay, J. Fresquet, C. Blanquart, E. Ishow, A. Zykwinska, J. Mech. Behav. Biomed. Mater. 163 (2025) 106865.
    [39]
    S. Abuhattum, D. Mokbel, P. Muller, D. Soteriou, J. Guck, S. Aland, iScience 25 (2022) 104016.
    [40]
    J. Cha, S. Jin, J.H. Shim, C.S. Park, H.J. Ryu, S.H. Hong, Mater. Des. 95 (2016) 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return