Turn off MathJax
Article Contents
Lifei Lian, Hanbin Hu, Zhaohui Wu, Sai An, Yu-Fei Song. Bimetallic Mo2C-Co Nanoparticles Embedded in Nitrogen-Doped Carbon Heterostructures as an Efficient Fenton-like Catalyst for Antibiotics Degradation. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.010
Citation: Lifei Lian, Hanbin Hu, Zhaohui Wu, Sai An, Yu-Fei Song. Bimetallic Mo2C-Co Nanoparticles Embedded in Nitrogen-Doped Carbon Heterostructures as an Efficient Fenton-like Catalyst for Antibiotics Degradation. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.010

Bimetallic Mo2C-Co Nanoparticles Embedded in Nitrogen-Doped Carbon Heterostructures as an Efficient Fenton-like Catalyst for Antibiotics Degradation

doi: 10.1016/j.gee.2025.12.010
  • Fenton and Fenton-like catalysts have demonstrated great potential in the field of antibiotic degradation. However, it remains a challenge to remove the high concentrations of antibiotics effectively over a wide range of pH values. Herein, we successfully fabricate a heterostructure of cobalt (Co) and molybdenum carbide (Mo2C) embedded in nitrogen-doped carbon (Mo2C-Co/N-C) by calcination of H3PMo12O40 (PMo12)-encapsulated Zn/Co-ZIF at 900 oC, in which the Co and Mo2C nanoparticles (NPs) are uniformly encapsulated in porous carbon with a high specific surface area of 315.9 m2·g-1 and a pore volume of 0.68 cm3·g-1. The as-prepared Mo2C-Co/N-C exhibits 99.3% degradation efficiency of 100 ppm of tetracycline (TC) within 20 min in the presence of H2O2 with the reaction rate constant k of 0.211 min-1, outperforming most reported Fenton-like catalysts. Moreover, the Mo2C-Co/N-C achieved above 90% removal efficiency for TC at concentrations up to 100 ppm over a wide range of pH values (3.0–9.0) and can also be recycled ten times without an obvious decrease in degradation efficiency, indicating satisfactory reusability and stability. Comprehensive studies demonstrated that the loss of electrons in Co species enhances the specific adsorption of TC and H2O2. Simultaneously, the Mo2C can accelerate the redox cycle of Co2+ → Co3+ → Co2+ and promote the generation of reactive oxygen species (1O2 and · OH) which ensured an improved catalytic activity.

     

  • loading
  • [1]
    P. Zhang, M. He, W. Teng, F. Li, X. Qiu, K. Li, H. Wang, Green Energy Environ. 9 (2024) 1239.
    [2]
    M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman Jr, D. Mohan, Chem. Rev. 119 (2019) 3510.
    [3]
    H. Xiong, X. Zhao, K. Song, D. Gao, Z. Yang, L. Han, Waste Management 203 (2025) 114880.
    [4]
    W. Wang, Y. Huang, P. Wang, Nat. Sustain. (2025) 10.1038/s41893-025-01587-9.
    [5]
    S. S. Priya, K. V. Radha, Chem. Eng. J. 204 (2017) 821.
    [6]
    Y. Jin, X. Mi, J. Qian, N. Ma, W. Dai, ACS Appl. Mater. Interfaces 4 (2022) 48285.
    [7]
    N. Liu, M. Tian, Y. Zhang, J. Yang, Z. Wang, W. Dai, G. Quan, J. Lei, X. Zhang, L. Tang, Chinese Chem. Lett. (2025) https://doi.org/10.1016/j.cclet.2025.111063.
    [8]
    Y. Song, T. Bo, J.-C. Ma, J.-F. Ma, Green Energy Environ. 10 (2025) 1531.
    [9]
    J. Xu, G. Jiao, G. Sheng, N. Lin, B. Yang, J. Wang, H. Jiang, Y. Wang, X. Zhang, Sep. Purif. Technol. 354 (2025) 129357.
    [10]
    Y. Wang, G. Sheng, S. Xu, J. Wang, J. Yang, H. Jiang, X. Zhang, Surf. Interfaces 69 (2025) 106739.
    [11]
    Y. Wang, G. Jiao, Y. Yang, J. Wang, J. Zhang, H. Jiang, N. Liu, X. Zhang, Desalination 602 (2025) 118643.
    [12]
    Y. Wang, W. Xia, G. Jiao, J. Wang, Y. Gong, Q. Yin, H. Jiang, X. Zhang, Colloids Surf. A: Physico Chem. Eng. Asp. 705 (2025) 135706.
    [13]
    H. Dong, Y. Lin, M. Feng, Y. Dai, Z. Dai, X. Duan, R. Dewil, X. Guan, J. Hazard. Mater. 495 (2025) 138858.
    [14]
    Y. Shang, L. Shi, F. Zhang, W. Chen, L. Luo, Z. Liu, Small, (2025) https://doi.org/10.1002/smll.202502858.
    [15]
    D. Liu, M. Li, X. Li, F. Ren, P. Sun, L. Zhou, Chem. Eng. J. 387 (2020) 124008.
    [16]
    J. Chen, C. Qin, Y. Mou, Y. Cao, H. Chen, X. Yuan, H. Wang, Chem. Eng. J. 459 (2023) 141588.
    [17]
    S. I. Aouni, Y. Benguerba, H. Ghodbane, A. Boublia, I. Lakikza, L. Boualleg, K. S. Abdel-Halim, M. Albrahim, S. Merouani, Sep. Purif. Technol. 374 (2025) 133628.
    [18]
    N. Song, Y. Li, Y. Wang, M. Wang, M. Liu, L. Chen, J. Zhao, Inorg. Chem. Front. 9 (2022) 4232.
    [19]
    J. Jiang, X. Wang, Y. Liu, Y. Ma, T. Li, Y. Lin, T. Xie, S. Dong, Appl. Catal. B: Environ. 278 (2020) 119349.
    [20]
    X. Du, S. Wang, F. Ye, Q. Zhang, Environ. Res. 206 (2022) 112414.
    [21]
    L. Wolski, K. Sobanska, M. Munko, A. Czerniak, P. Pietrzyk, ACS Appl. Mater. Interfaces 14 (2022) 31824.
    [22]
    K. Shanmugaraj, V. Manikandan, C. H. Campos, V. Vinoth, R. V. Mangalaraja, M. Mathivanan, N. Pugazhenthiran, J. Noe Diaz de Leon, K. S. Song, J. Environ. Chem. Eng. 12 (2024) 113948.
    [23]
    Q. Rao, H.-q. Li, P. Yang, Z. Guo, Korean J. Chem. Eng. 42 (2025) 563.
    [24]
    X. Jing, X. Peng, X. Sun, W. Zhou, W. Wang, S. Wang, Mat. Sci. Semicon. Proc. 100 (2019) 262.
    [25]
    Y. Bao, T. Chen, Z. Zhu, H. Zhang, Y. Qiu, D. Yin, Chemosphere 287 (2022) 132047.
    [26]
    T. Ouyang, Y.-Q. Ye, C.-Y. Wu, K. Xiao, Z.-Q. Liu, Angew. Chem. Int. Ed. 58 (2019) 4923.
    [27]
    L. Yang, H. Chen, F. Jia, W. Peng, X. Tian, L. Xia, X. Wu, S. Song, ACS Appl. Mater. Interfaces 13 (2021) 14342.
    [28]
    F. Nie, W. Xu, D. Zhang. J. Wang, R. Zhang, X. Fang, Y. Wang, J. Environ. Chem. Eng. 10 (2022) 107604.
    [29]
    H. Cheng, X. Li, C. Huang, J. Zhu, P. Wang, H. Cao, C. Feng, D. Ling, H. Liu, M. Cheng, J. Clean. Prod. 393 (2023) 136354.
    [30]
    C. Zhao, X. Wu, T. Cheng, T. Y. Yip, B. Yuan, W. Dai, S. Zhang, Y. Qiu, J. L. Chen, S.-W. Chou, Y.-K. Peng, Appl. Surf. Sci. Adv. 25 (2025) 100670.
    [31]
    L. Lei, W. Yang, X. Wu, Y. Liu, D. Yu, Y. Zhu, Z. Zhang, X. Yang, J. Am. Ceram. Soc. 108 (2025) 20544.
    [32]
    H. Hu, Y. Yang, X. Jiang, J. Wang, D. Cao, L. He, W. Chen, Y.-F. Song, Chem. Eur. J. 27 (2021) 13367.
    [33]
    G. Liu, L. Liu, T. Gong, Y. Li, L. Chen, J. Zhao, Inorg. Chem. 60 (2021) 14457.
    [34]
    L. Lian, X. Chen, X. Yi, Y. Liu, W. Chen, A. Zheng, H. N. Miras, Y.-F. Song, Chem. Eur. J 26 (2020) 11900-11908.
    [35]
    L. Lian, Y. Liu, X. Yi, H. Hu, X. Chen, H. Li, W. Chen, A. Zheng, Y.-F. Song, Sci. China. Chem. 65 (2022) 699.
    [36]
    F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5 (2014) 5261.
    [37]
    S. Yan, H. Guo, L. Wang, Q. Jin, J. Chang, H. Xu, X. Zhang, Ind. Eng. Chem. Res. 61 (2022) 16489.
    [38]
    P. Zhang, Y. Liu, T. Liang, E. H. Ang, X. Zhang, F. Ma, Z. Dai, Appl. Catal. B: Environ. 284 (2021) 11973.
    [39]
    Y. Zhao, H. Wang, Langmuir 37 (2021) 13969.
    [40]
    Y. Yang, F. Bi, J. Wei, X. Han, B. Gao, R. Qiao, J. Xu, N. Liu, X. Zhang, Environ. Sci. Technol. 59 (2025) 11341.
    [41]
    L. Wang, Q. Zhang, T. Wei, F. Li, Z. Sun, L. Xu, J. Mater. Chem. A 9 (2021) 2912.
    [42]
    F. Bi, J. Wei, Z. Zhou, Y. Zhang, B. Gao, N. Liu, J. Xu, B. Liu, Y. Huang, X. Zhang, JACS Au 5 (2025) 363.
    [43]
    X. Chen, F. O. Gudda, X. Hu, M. G. Waigi, Y. Gao, npj Clean Water 66 (2022) 1-11.
    [44]
    J. Zhang, X. Sun, P. Wei, G. Lu, S. Sun, Y. Xu, C. Fang, Q. Li, J. Han, ChemCatChem 12 (2020) 3737.
    [45]
    C. Tian, H. Zhao, H. Sun, K. Xiao, P. K. Wong, Chem. Eng. J. 381 (2020) 122760.
    [46]
    Z. Chen, C. Lai, L. Qin, L. Li, L. Yang, S. Liu, M. Zhang, X. Zhou, F. Xu, H. Yan, C. Tang, S. Qian, Q. Sun, Sep. Purif. Technol. 314 (2023) 123516.
    [47]
    L. Li, M. Cheng, L. Qin, E. Almatrafi, X. Yang, L. Yang, C. Tang, S. Liu, H. Yi, M. Zhang, Y. Fu, X. Zhou, F. Xu, G. Zeng, C. Lai, Sci. Total Environ. 828 (2022) 154188.
    [48]
    Z. Wu, Y.-y. Gu, S. Xin, L. Lu, Z. Huang, M. Li, Y. Cui, R. Fu, S. Wang, Chem. Eng. J. 434 (2022) 134574.
    [49]
    J. He, Z. Lv, M. Su, Y. Pu, W. Song, J. Gao, S. Yuan, Y. Wang, L. Ouyang, Mater. Res. Bull. 192 (2025) 113584.
    [50]
    J. Wang, C. Liu, J. Feng, D. Cheng, C. Zhang, Y. Yao, Z. Gu, W. Hu, J. Wan, C. Yu, J. Hazard. Mater. 394 (2020) 122567.
    [51]
    R.-H. Jiang, T.-H. Ha, C. Chiemchaisri, W.-Y. Chen, M.-C. Lu, J. Environ. Chem. Eng. 2025 117483.
    [52]
    T. Li, L. Ge, X. Peng, W. Wang, W. Zhang, Water Res. 190 (2021) 116777.
    [53]
    S. Liu, C. Lai, X. Zhou, C. Zhang, L. Chen, H. Yan, L. Qin, D. Huang, H. Ye, W. Chen, L. Li, M. Zhang, L. Tang, F. Xu, D. Ma, Water Res. 221 (2022) 118797.
    [54]
    S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li, Chem. Eng. J. 430 (2022) 132697.
    [55]
    S. K. Ponnusamy, S. S. Balakrishnapillai, G. Padmalaya, K. K. Kungumaraj, Ind. Eng. Chem. Res. 62 (2023) 4521.
    [56]
    L. J. Peng, Y. A. Shang, B. Y. Gao, X. Xu, Appl. Catal. B: Environ. 282 (2021) 119484.
    [57]
    R.-H. Jiang, T.-H. Ha, C. Chiemchaisri, W.-Y. Chen, M.-C. Lu, J. Environ. Chem. Eng. 13 (2025) 117483.
    [58]
    C. Wang, Z. Wu, G. Liu, S. Bai, L. Guo, L. He, Y.-F. Song, Inorg. Chem. Front. 9 (2022) 5926.
    [59]
    W. Qu, W. Liu, H. Wen, X. Qu, Y. Guo, Z. Tang, L. Hu, S. Tian, C. He, D. Shu, ACS EST 3 (2023) 213.
    [60]
    J. Fu, X. Liu, G. Huang, Z. Wang, Chem. Eng. J. 505 (2025) 159260.
    [61]
    H. Cheng, X. Li, C. Huang, J. Zhu, P. Wang, H. Cao, C. Feng, D. Ling, H. Liu, M. Cheng, J. Clean. Prod. 393 (2023) 136354.
    [62]
    H. Liu, Z. Tian, C. Huang, P. Wang, S. Huang, X. Yang, H. Cheng, X. Zheng, H. Tian, Z. Liu, Sep. Purif. Technol. 301 (2022) 122035.
    [63]
    Z. Xu, Y. Zhang, F. Wang, Z. Li, W. Gu, Y. Zhang, H. Xi, Chem. Eng. J. 452 (2023) 139229.
    [64]
    X. Zhang, J. Liang, Y. Sun, F. Zhang, C. Li, C. Hu, L. Lyu, J. Colloid Interface Sci. 576 (2020) 59.
    [65]
    J. Cao, Z. Xiong, B. Lai, Chem. Eng. J. 343 (2018) 492.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return