Turn off MathJax
Article Contents
Conghao Ku, Lihua Du, Huidu Xu, Xucheng Li, Siyuan Long, Zhengli Liu, Ik Seon Kwon, Jeunghee Park, Weiran Yang. Hexagonal close-packed Ni (101) facets boost furan ring activation for selective total hydrogenation of biomass-derived 5-hydroxymethylfurfural over carbon-encapsulated Ni catalysts. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.009
Citation: Conghao Ku, Lihua Du, Huidu Xu, Xucheng Li, Siyuan Long, Zhengli Liu, Ik Seon Kwon, Jeunghee Park, Weiran Yang. Hexagonal close-packed Ni (101) facets boost furan ring activation for selective total hydrogenation of biomass-derived 5-hydroxymethylfurfural over carbon-encapsulated Ni catalysts. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.009

Hexagonal close-packed Ni (101) facets boost furan ring activation for selective total hydrogenation of biomass-derived 5-hydroxymethylfurfural over carbon-encapsulated Ni catalysts

doi: 10.1016/j.gee.2025.12.009
  • Selective total hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) under mild condition is crucial in biomass refining, yet dauntingly challenging with non-precious metal catalysts. Herein, the hexagonal-close-packed (hcp) Ni dominated carbon-encapsulated Ni-based catalyst (Ni@C-3) was fabricated via a facile citric acid induced carbonization strategy, which exhibited an outstanding catalytic performance toward the hydrogenation of HMF, achieving a high BHMTHF yield of 95.4% under 70 °C and 2 MPa H2. Additionally, even at high HMF concentrations (2500 mM), it maintained an high BHMTHF yield of 89.7%. The carbon layer, derived from the thermal decomposition of citric acid, effectively prevents the agglomeration of Ni nanoparticles and suppresses the phase transition of hcp-Ni to fcc-Ni. The carbon-encapsulated structure ensures the excellent storage stability and reusability of catalysts. Structure-activity relationship studies demonstrated that the hcp-Ni (101) crystal facets effectively reduce the reaction energy barrier of the rate-determining step (furan ring hydrogenation) during the reaction process, thereby promoting the hydrogenation of HMF to BHMTHF. Furthermore, the Ni@C-3 exhibited excellent catalytic activity in the hydrogenation of compounds containing various functional groups. Notably, furfural can also be hydrogenated to tetrahydrofurfuryl alcohol (THFA) under solvent-free conditions, and the yield of THFA can reach 91.2%. This study provides a facile strategy for designing and developing advanced hydrogenation catalysts based on crystal phase engineering, which makes it a promising alternative to noble metal catalysts in biorefineries.

     

  • loading
  • [1]
    M. Wang, Y. Wang, J. Liu, H. Yu, P. Liu, Y. Yang, D. Sun, H. Kang, Y. Wang, J. Tang, C. Fu, L. Peng, Green Carbon 2 (2024) 164-175.
    [2]
    H. Dai, Y. Huang, H. Bai, H. Li, H. Zhao, F. Wang, W. Fan, W. Shi, Adv. Energy Mater. 14 (2024) 2402789.
    [3]
    M. Yin, H. Dai, X. Chen, W. Fan, H. Bai, Chem. Commun. 61 (2025) 7891-7894.
    [4]
    X. Pang, H. Bai, H. Zhao, W. Fan, W. Shi, ACS Catal. 12 (2022) 1545-1557.
    [5]
    J. Li, Y. Meng, Y. Wen, Y. He, P. Sudarsanam, S. Yang, H. Li, Green Energy Environ. 10 (2025) 1050-1063.
    [6]
    J. Liang, J. Jiang, T. Cai, C. Liu, J. Ye, X. Zeng, K. Wang, Green Energy Environ. 9 (2024) 1384-1406.
    [7]
    H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang, L. Lin, Green Energy Environ. 7 (2022) 900-932.
    [8]
    C. Chien Truong, D. Kumar Mishra, S. Hyeok Ko, Y. Jin Kim, Y.W. Suh, ChemSusChem 15 (2022) e202200178.
    [9]
    J. Mitra, X. Zhou, T. Rauchfuss, Green Chem. 17 (2015) 307-313.
    [10]
    R. Huang, J. Jiang, J. Liang, S. Wang, Y. Chen, X. Zeng, K. Wang, Green Energy Environ. 10 (2025) 573-584.
    [11]
    D. Lin, M.-V. Jordi, M. Lili, L. Licheng, L. Nuria, P.-R. Javier, C. Zupeng, Appl. Catal. B Environ. Energy (2023) 122893.
    [12]
    J. Chen, Y. Ge, Y. Guo, J. Chen, J. Energy Chem. 27 (2018) 283-289.
    [13]
    Y. Wu, Y. Tong, H. Liang, J. Peng, X.-K. Gu, M. Ding, Chem. Eng. J. 460 (2023) 141779.
    [14]
    J. Ohyama, Y. Ohira, A. Satsuma, Catal. Sci. Technol. 7 (2017) 2947-2953.
    [15]
    L. Huai, J. Zhang, W.A. Goddard, 3rd, J. Am. Chem. Soc. 146 (2024) 31251-31263.
    [16]
    C. Chen, M. Lv, H. Hu, L. Huai, B. Zhu, S. Fan, Q. Wang, J. Zhang, Adv. Mater. 36 (2024) e2311464.
    [17]
    X. Tang, J. Wei, N. Ding, Y. Sun, X. Zeng, L. Hu, S. Liu, T. Lei, L. Lin, Renew. Sust. Energ. Rev. 77 (2017) 287-296.
    [18]
    M. Lv, L. Huai, G. Chen, X. Zhao, C. Chen, S. Zhou, J. Zhang, Appl. Catal. B Environ. Energy 361 (2025) 124578.
    [19]
    R. Guo, Y. Zeng, L. Lin, D. Hu, C. Lu, S. Conroy, S. Zhang, C. Zeng, H. Luo, Z. Jiang, X. Zhang, X. Tu, K. Yan, Angew. Chem. Int. Ed. (2024) e202418234.
    [20]
    R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, J. Dumesic, Green Chem. 14 (2012) 1413-1419.
    [21]
    Y. Nakagawa, K. Takada, M. Tamura, K. Tomishige, ACS Catal. 4 (2014) 2718-2726.
    [22]
    X. Kong, R. Zheng, Y. Zhu, G. Ding, Y. Zhu, Y.-W. Li, Green Chem. 17 (2015) 2504-2514.
    [23]
    S. Yao, X. Wang, Y. Jiang, F. Wu, X. Chen, X. Mu, ACS Sustain. Chem. Eng. 2 (2013) 173-180.
    [24]
    B. Pomeroy, M. Grilc, B. Likozar, Green Chem. 23 (2021) 7996-8002.
    [25]
    Y. Zhang, A. Rezayan, K. Wang, J. Wang, C.C. Xu, R. Nie, ACS Catal. 13 (2022) 803-814.
    [26]
    J. Su, Y. Ji, S. Geng, L. Li, D. Liu, H. Yu, B. Song, Y. Li, C.W. Pao, Z. Hu, X. Huang, J. Lu, Q. Shao, Adv. Mater. 36 (2024) e2308839.
    [27]
    P. Li, R. Chen, Y. Huang, W. Li, S. Zhao, S. Tian, Appl. Catal. B Environ. Energy 300 (2022).
    [28]
    S. Mourdikoudis, K. Simeonidis, A. Vilalta-Clemente, F. Tuna, I. Tsiaoussis, M. Angelakeris, C. Dendrinou-Samara, O. Kalogirou, J. Magn. Magn. Mater. 321 (2009) 2723-2728.
    [29]
    A.P. LaGrow, S. Cheong, J. Watt, B. Ingham, M.F. Toney, D.A. Jefferson, R.D. Tilley, Adv. Mater. 25 (2013) 1552-1556.
    [30]
    Q. Shao, Y. Wang, S. Yang, K. Lu, Y. Zhang, C. Tang, J. Song, Y. Feng, L. Xiong, Y. Peng, Y. Li, H.L. Xin, X. Huang, ACS Nano 12 (2018) 11625-11631.
    [31]
    J. Zhuang, F. He, X. Liu, P. Si, F. Gu, J. Xu, Y. Wang, G. Xu, Z. Zhong, F. Su, Nano Res. 15 (2021) 1230-1237.
    [32]
    J. He, L. Zeng, J. Li, D. Zhu, T. Gao, Y. Wang, Y. Chen, Nano Energy 128 (2024).
    [33]
    A. Kotoulas, M. Gjoka, K. Simeonidis, I. Tsiaoussis, M. Angelakeris, O. Kalogirou, C. Dendrinou-Samara, J. Nanopart. Res. 13 (2010) 1897-1908.
    [34]
    Y. Lv, X. Mao, W. Gong, D. Wang, C. Chen, P. Liu, Y. Lin, G. Wang, H. Zhang, A. Du, H. Zhao, Sci. China Mater. 65 (2022) 1252-1261.
    [35]
    Y. Li, Z. Li, H. Cong, C. Yang, G. Cheng, W. Luo, ACS Sustain. Chem. Eng. 10 (2022) 3682-3689.
    [36]
    P. Li, Y. Huang, Q. Huang, R. Chen, J. Li, S. Tian, J. Energy Chem. 79 (2023) 72-82.
    [37]
    N. Xi, Q. Li, Y. Chen, R. Bao, Q. Wang, Y. Lin, J. Yue, R. Wang, C. Yang, W. Yin, T. Qiu, Chem. Eng. J. 512 (2025) 162222.
    [38]
    Y. Li, Y. Men, S. Liu, J. Wang, K. Wang, Y. Tang, W. An, X. Pan, L. Li, Appl. Catal. B Environ. Energy 293 (2021) 120206.
    [39]
    S. Chen, J. Zeng, Z. Liao, H. Xie, G. Zhou, J. Environ. Chem. Eng. 13 (2025) 117518.
    [40]
    P. Li, P. Zhang, F. Li, W. Jiang, Z. Cao, J. Sol-Gel Sci. Technol. 68 (2013) 261-269.
    [41]
    X. Meng, Y. Yang, L. Chen, M. Xu, X. Zhang, M. Wei, ACS Catal. 9 (2019) 4226-4235.
    [42]
    H.R. Pan, Z.Q. Shi, X.Z. Liu, S. Jin, J. Fu, L. Ding, S.Q. Wang, J. Li, L. Zhang, D. Su, C. Ling, Y. Huang, C. Xu, T. Tang, J.S. Hu, Angew. Chem. Int. Ed. (2024) e202409763.
    [43]
    P. Li, Y. Huang, X. Ouyang, W. Li, F. Li, S. Tian, Chem. Eng. J. 464 (2023).
    [44]
    L. He, J. Magn. Magn. Mater. 322 (2010) 1991-1993.
    [45]
    J. Ding, Y. Ji, Y. Li, G. Hong, Nano Lett. 21 (2021) 9381-9387.
    [46]
    J. Matsuda, T. Yamamoto, S. Takahashi, H. Nakanishi, K. Sasaki, S. Matsumura, ACS Appl. Nano Mater. 4 (2021) 2175-2182.
    [47]
    R.-T. Chiang, R.-K. Chiang, F.-S. Shieu, RSC Adv. 4 (2014) 19488.
    [48]
    G. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, ACS Nano 6 (2012) 3214-3223.
    [49]
    S. Rezaee, S. Shahrokhian, Appl. Catal. B Environ. Energy 244 (2019) 802-813.
    [50]
    H. Chen, D. Ge, J. Chen, R. Li, X. Zhang, T. Yu, Y. Wang, S. Song, Chem. Commun. 56 (2020) 10529-10532.
    [51]
    B.M. Abu-Zied, A.M. Asiri, Thermochim. Acta 649 (2017) 54-62.
    [52]
    Y. Zheng, R. Zhang, L. Zhang, Q. Gu, Z.A. Qiao, Angew. Chem. Int. Ed. 60 (2021) 4774-4781.
    [53]
    Y. Qiu, S. Ali, G. Lan, H. Tong, J. Fan, H. Liu, B. Li, W. Han, H. Tang, H. Liu, Y. Li, Carbon 146 (2019) 406-412.
    [54]
    R. Xie, G. Fan, Q. Ma, L. Yang, F. Li, J. Mater. Chem. A 2 (2014) 7880-7889.
    [55]
    R. Huang, S. Yuan, B. Chen, Z. Yang, Y. Tian, Z. Li, L. Lin, X. Zeng, Chem. Eng. Sci. 298 (2024).
    [56]
    Y. Liu, H. Yuan, B. Zhang, L. Zhang, Q. Xu, M. Dong, T. Wang, X. Cheng, H. Qi, Z. Zhao, L. Chen, B. Su, B. Han, H. Liu, ACS Sustain. Chem. Eng. 12 (2024) 16202-16211.
    [57]
    S. Fulignati, C. Antonetti, T. Tabanelli, F. Cavani, A.M. Raspolli Galletti, ChemSusChem 15 (2022) e202200241.
    [58]
    W. Lin, H. Cheng, L. He, Y. Yu, F. Zhao, J. Catal. 303 (2013) 110-116.
    [59]
    Q. Fu, L. Yan, D. Liu, S. Zhang, H. Jiang, W. Xie, L. Yang, Y. Wang, H. Wang, X. Zhao, Appl. Catal. B Environ. Energy 343 (2024) 123501.
    [60]
    X. Liao, H. Cui, H. Luo, Y. Lv, P. Liu, Chem. Eng. J. 505 (2025) 159602.
    [61]
    X. Liao, H. Cui, H. Luo, Y. Lv, P. Liu, Chem. Eng. J. 503 (2025) 158336.
    [62]
    L. Zhang, X. Li, J. Wang, Z. Zeng, W. Yang, S. Deng, Q. Deng, AlChE J. 69 (2022) e17996.
    [63]
    X. Yu, H. Wang, W. Jia, C. Li, J. Chen, L. Peng, Y. Sun, X. Tang, X. Zeng, S. Yang, Z. Li, F. Xu, L. Lin, Fuel 329 (2022) 125462.
    [64]
    J. Wu, J. Zhang, L. Wang, Z. Han, X. Hui, Y. Cao, J. Shi, S. Xu, P. He, H. Li, Chem. Eng. J. 488 (2024) 151083.
    [65]
    X. Li, Z. Wang, S. Mao, Y. Chen, M. Tang, H. Li, Y. Wang, Chin. J. Chem. 36 (2018) 1191-1196.
    [66]
    X. Huang, K. Liu, W.L. Vrijburg, X. Ouyang, A. Iulian Dugulan, Y. Liu, M.W.G.M. Tiny Verhoeven, N.A. Kosinov, E.A. Pidko, E.J.M. Hensen, Appl. Catal. B Environ. Energy 278 (2020) 119314.
    [67]
    J. Yuan, S.-S. Li, L. Yu, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Energy Environ. Sci. 6 (2013) 3308-3313.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return