Turn off MathJax
Article Contents
Yaoqiang Wang, Gang Xiao, Jianmin Xing, Haijia Su. Clostridium butyricum Mineralization of Intracellular Gold Nanoclusters to Boost Biohydrogen Production Using Visible Light. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.008
Citation: Yaoqiang Wang, Gang Xiao, Jianmin Xing, Haijia Su. Clostridium butyricum Mineralization of Intracellular Gold Nanoclusters to Boost Biohydrogen Production Using Visible Light. Green Energy&Environment. doi: 10.1016/j.gee.2025.12.008

Clostridium butyricum Mineralization of Intracellular Gold Nanoclusters to Boost Biohydrogen Production Using Visible Light

doi: 10.1016/j.gee.2025.12.008
  • Photocatalytic intracellular biohybrid systems hold great potential for enhancing biohydrogen production using solar energy. yet conventional approaches face nanoparticle toxicity and inefficient transmembrane electron transfer. Here, we developed an intracellular biohybrid system via in-situ biomineralization of gold nanoclusters (Au NCs, 2.15 ± 0.68 nm) within C. butyricum. This biosynthesis leveraged native ion-transport proteins for Au(III) uptake, synthesizing photocatalytically active Au NCs through cysteine-mediated reduction. This intracellular engineering confines photoexcitation and electron transfer within bacterial cells, eliminating transmembrane energy losses. As expected, the photoexcited Au NCs significantly enhanced intracellular NADH regeneration and ATP synthesis versus dark controls, boosting metabolic reducing power and energy. This resulted in a 70.42% increase in hydrogen production (2.34 mol H2·mol-1 glucose). Furthermore, Au NCs eliminated reactive oxygen species (ROS), improving system viability and stability under visible light. This work establishes a platform for engineering biocompatible hybrid systems via endogenous nanophotocatalyst self-assembly.

     

  • loading
  • [1]
    T. Singh, A. Sehgal, R. Singh, S. Sharma, D.B. Pal, H.M. Tashkandi, R. Raddadi, S. Harakeh, S. Haque, M. Srivastava, Renewable Sustainable Energy Rev. 183 (2023) 113389.
    [2]
    S. Li, Q. Kang, J. Baeyens, H. Zhang, Y. Deng, Earth Environ. Sci. (2020), p 012011.
    [3]
    P. Nikolaidis, A. Poullikkas, Renewable Sustainable Energy Rev. 67 (2017) 597-611.
    [4]
    M. El-Qelish, G.K. Hassan, S. Leaper, P. Dessi, A. Abdel-Karim, J. Environ. Manage. 316 (2022) 115239.
    [5]
    F. Suleman, I. Dincer, M. Agelin-Chaab, Int. J. Hydrogen Energy 40 (2015) 6976-6987.
    [6]
    B.S. Rathi, P.S. Kumar, G. Rangasamy, S. Rajendran, Int. J. Hydrogen Energy 52 (2024) 115-138.
    [7]
    H. Ogata, K. Nishikawa, W. Lubitz, Nat. 520 (2015) 571-574.
    [8]
    K.A. Brown, M.B. Wilker, M. Boehm, G. Dukovic, P.W. King, J. Am. Chem. Soc. 134 (2012) 5627-5636.
    [9]
    B. Wang, C. Zeng, K.H. Chu, D. Wu, H.Y. Yip, L. Ye, P.K. Wong, Adv. Energy Mater. 7 (2017) 1700611.
    [10]
    D. Wu, W. Zhang, B. Fu, Z. Zhang, Joule 6 (2022) 2293-2303.
    [11]
    X.-M. Wang, L. Chen, R.-L. He, S. Cui, J. Li, X.-Z. Fu, Q.-Z. Wu, H.-Q. Liu, T.-Y. Huang, W.-W. Li, Nanoscale 14 (2022) 8409-8417.
    [12]
    Z. Jiang, B. Wang, C.Y. Jimmy, J. Wang, T. An, H. Zhao, H. Li, S. Yuan, P.K. Wong, Nano Energy 46 (2018) 234-240.
    [13]
    N. Kosem, Y. Honda, M. Watanabe, A. Takagaki, Z.P. Tehrani, F. Haydous, T. Lippert, T. Ishihara, Catal. Sci. Technol. 10 (2020) 4042-4052.
    [14]
    S. Cui, L.-J. Tian, J. Li, X.-M. Wang, H.-Q. Liu, X.-Z. Fu, R.-L. He, P.K. Lam, T.-Y. Huang, W.-W. Li, Chem. Eng. J. 428 (2022) 131254.
    [15]
    B. Luo, Y.Z. Wang, D. Li, H. Shen, L.X. Xu, Z. Fang, Z. Xia, J. Ren, W. Shi, Y.C. Yong, Adv. Energy Mater. 11 (2021) 2100256.
    [16]
    K.K. Sakimoto, A.B. Wong, P. Yang, Sci. 351 (2016) 74-77.
    [17]
    Z. Wang, D. Gao, H. Geng, C. Xing, J. Mater. Chem. A 9 (2021) 19788-19795.
    [18]
    H. Zhang, H. Liu, Z. Tian, D. Lu, Y. Yu, S. Cestellos-Blanco, K.K. Sakimoto, P. Yang, Nat. Nanotechnol. 13 (2018) 900-905.
    [19]
    Y. Wang, Y. Zhao, S. Wang, G. Xiao, Y. Jin, Z. Wang, H. Su, ACS Sustainable Chem. Eng. 1 (2023) 300- 311.
    [20]
    B.-X. Zheng, J.-N. Yuan, P. Su, X. Yan, Q. Chen, M. Yuan, F.-X. Xiao, J. Mater. Chem. A 13 (2025) 4908-4920.
    [21]
    G. Yang, Z. Wang, F. Du, F. Jiang, X. Yuan, J.Y. Ying, J. Am. Chem. Soc. 145 (2023) 11879-11898.
    [22]
    K. Liu, Z. Wang, Y. Xie, Y. Wei, W. Liu, T. Feng, Y. Liu, H. Zhu, X. Yuan, Chin. Chem. Lett. (2025) 111701.
    [23]
    Z.H. Zheng, F.X. Xiao, Y.J. Xu, Small 21 (2025) 2505282.
    [24]
    Z.Y. Li, M. Yuan, F.X. Xiao, Small 21 (2025) 2409513.
    [25]
    Y.-B. Li, F.-X. Xiao, Chem. Sci. 16 (2025) 2661-2672.
    [26]
    F. Mi, N. Zhao, L. Jin, Z. Zhang, X. Wang, X. Fang, W. Li, Z. Liu, P. Shu, X. Zhang, BMEMat 3 (2025) e12126.
    [27]
    Y.-B. Li, F.-X. Xiao, Inorg. Chem. 64 (2025) 3608-3615.
    [28]
    M. Kus-Liskiewicz, P. Fickers, I. Ben Tahar, Int. J. Mol. Sci. 22 (2021) 10952.
    [29]
    T.S. Dasari, Y. Zhang, H. Yu, Biochem. Pharmacol. 4 (2015) 199.
    [30]
    J. Depciuch, M. Stec, M. Kandler, J. Baran, M. Parlinska-Wojtan, Photodiagn. Photodyn. Ther. 30 (2020) 101670.
    [31]
    N. Kornienko, K.K. Sakimoto, D.M. Herlihy, S.C. Nguyen, A.P. Alivisatos, C.B. Harris, A. Schwartzberg, P. Yang, Proc. Natl. Acad. Sci. 113 (2016) 11750-11755.
    [32]
    H. An, Z. Song, P. Li, G. Wang, B. Ma, X. Wang, Appl. Nanosci. 10 (2020) 617-622.
    [33]
    E. Fontes, C. Ramos, C. Ottoni, R. De Souza, E. Antolini, A. Neto, Renewable Energy 167 (2021) 954-959.
    [34]
    Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc. 127 (2005) 5261-5270.
    [35]
    Y.S. Borghei, M. Hosseini, M.R. Ganjali, Sens. Actuators, B 273 (2018) 1618-1626.
    [36]
    W. Luo, C. Wang, J. Min, H. Luo, RSC Adv. 13 (2023) 7425-7431.
    [37]
    H. Shan, J. Shi, T. Chen, Y. Cao, Q. Yao, H. An, Z. Yang, Z. Wu, Z. Jiang, J. Xie, ACS nano 17 (2023) 2368-2377.
    [38]
    J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Appl. Catal. B 179 (2015) 1-8.
    [39]
    B. Ma, S. Sun, H. He, R. Lv, J. Deng, T. Huo, Y. Zhao, H. Yu, L. Zhou, Ind. Eng. Chem. Res. 58 (2019) 23567-23573.
    [40]
    T. Anusha, K.S. Bhavani, J.S. Kumar, P.K. Brahman, R.Y. Hassan, Bioelectrochemistry 143 (2022) 107935.
    [41]
    Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Appl. Surf. Sci. 430 (2018) 380-389.
    [42]
    J. Yan, W. Ye, X. Liang, S. Wang, J. Xie, K. Zhong, M. Bao, J. Yang, H. Wen, S. Li, Environ. Res. 183 (2020) 109157.
    [43]
    H. Xu, E. He, W.J. Peijnenburg, L. Song, L. Zhao, X. Xu, X. Cao, H. Qiu, J. Hazard. Mater. 415 (2021) 125616.
    [44]
    A. Rai, S. Seena, T. Gagliardi, P. Palma, Adv. Colloid Interface Sci. (2023) 102951.
    [45]
    S.M. Kalantarian, P. Slovensky, Z. Wang, V. Romanovski, E. Romanovskaia, M. Halama, M. Auinger, H.Y. Nie, Y.S. Hedberg, Part. Part. Syst. Charact. (2025) 70001.
    [46]
    H. Kim, Y.S. Hwang, M. Kim, S.B. Park, RSC Med. Chem. 12 (2021) 1037-1045.
    [47]
    X. Wang, T. Saba, H.H. Yiu, R.F. Howe, J.A. Anderson, J. Shi, Chem 2 (2017) 621-654.
    [48]
    J. Li, J. Ge, Z. Zhang, J. Qiang, T. Wei, Y. Chen, Z. Li, F. Wang, X. Chen, Sens. Actuators, B 296 (2019) 126578.
    [49]
    G. Cai, B. Jin, P. Monis, C. Saint, Biotechnol. Bioeng. 110 (2013) 338-342.
    [50]
    R. Lukajtis, I. Holowacz, K. Kucharska, M. Glinka, P. Rybarczyk, A. Przyjazny, M. Kaminski, Renewable Sustainable Energy Rev. 91 (2018) 665-694.
    [51]
    Y. Lin, J. Shi, W. Feng, J. Yue, Y. Luo, S. Chen, B. Yang, Y. Jiang, H. Hu, C. Zhou, Sci. Adv. 9 (2023) eadg5858.
    [52]
    M.C. Schoelmerich, V. Muller, Cell. Mol. Life Sci. 77 (2020) 1461-1481.
    [53]
    J. Lin, H. Zhang, Z. Chen, Y. Zheng, ACS nano 4 (2010) 5421-5429.
    [54]
    M. Hayyan, M.A. Hashim, I.M. Alnashef, Chem. Rev. 116 (2016) 3029-3085.
    [55]
    B. Santiago-Gonzalez, A. Monguzzi, J.M. Azpiroz, M. Prato, S. Erratico, M. Campione, R. Lorenzi, J. Pedrini, C. Santambrogio, Y. Torrente, Sci. 353 (2016) 571-575.
    [56]
    Y. Gao, N. Shao, Y. Pei, Z. Chen, X.C. Zeng, ACS nano 5 (2011) 7818-7829.
    [57]
    Y. Ueno, T. Kawai, S. Sato, S. Otsuka, M. Morimoto, J. Ferment. Bioeng. 79 (1995) 395-397.
    [58]
    J. Zhang, C. Fan, H. Zhang, Z. Wang, J. Zhang, M. Song, Int. J. Hydrogen Energy 43 (2018) 8729-8738.
    [59]
    G.K. Dinesh, R. Chauhan, S. Chakma, Renewable Sustainable Energy Rev. 92 (2018) 807-822.
    [60]
    I. Akkerman, M. Janssen, J. Rocha, R.H. Wijffels, Int. J. Hydrogen Energy 27 (2002) 1195-1208.
    [61]
    K.X. Lee, K. Shameli, Y.P. Yew, S.-Y. Teow, H. Jahangirian, R. Rafiee-Moghaddam, T.J. Webster, Int. J. Nanomed. (2020) 275-300.
    [62]
    X. Yu, H. Li, C. Xu, Z. Xu, S. Chen, W. Liu, T. Zhang, H. Sun, Y. Ge, Z. Qi, Adv. Sci. 11 (2024) 2400097.
    [63]
    M. Martins, C. Toste, I.A. Pereira, Angew. Chem., Int. Ed. 60 (2021) 9055-9062.
    [64]
    B. Ramprakash, A. Incharoensakdi, Int. J. Hydrogen Energy 45 (2020) 6254-6261.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return