Volume 10 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Shaobin Wen, Jingyu Zhang, Bin Peng, Liyuan Fan, Qiang Zhang. Ferrocene-functionalized ultrafiltration membrane: Integrated approach for natural organic matter separation and catalytic degradation of small-molecule dye. Green Energy&Environment, 2025, 10(12): 2461-2474. doi: 10.1016/j.gee.2025.05.008
Citation: Shaobin Wen, Jingyu Zhang, Bin Peng, Liyuan Fan, Qiang Zhang. Ferrocene-functionalized ultrafiltration membrane: Integrated approach for natural organic matter separation and catalytic degradation of small-molecule dye. Green Energy&Environment, 2025, 10(12): 2461-2474. doi: 10.1016/j.gee.2025.05.008

Ferrocene-functionalized ultrafiltration membrane: Integrated approach for natural organic matter separation and catalytic degradation of small-molecule dye

doi: 10.1016/j.gee.2025.05.008
  • Water pollution and scarcity have become major global challenges. The Fenton oxidation method has been widely applied in organic wastewater treatment due to its ability to efficiently degrade toxic organic pollutants. However, traditional homogeneous Fenton systems have several limitations, such as slow reaction rates and the generation of iron sludge. In this study, a ferrocene-based catalytic ultrafiltration membrane was developed by UV photopolymerization. This membrane integrated Fenton reaction with membrane separation technology significantly enhances pollutant removal efficiency, prevents iron sludge formation, and provides self-cleaning properties to extend the service life of the membrane. The results indicated that the ferrocene groups are uniformly distributed on the membrane surface, greatly improving their catalytic efficiency. In heterogeneous Fenton reactions, M2 exhibited excellent catalytic activity, achieving a degradation rate of > 99.9% of methyl orange (MO) within 90 s. Additionally, under the synergistic effect of membrane filtration and catalysis, M2 efficiently removed humic acid (HA) and MO and demonstrated good reusability over multiple cycles. Moreover, under Fenton reaction conditions, M2 showed superior self-cleaning performance, achieving a high FRR value of 94.1%. Overall, this catalytic membrane enhanced pollutant removal efficiency through the combined effect of membrane separation and catalysis, effectively degrading small molecule dyes in the presence of natural organic matter, offering a novel approach to addressing water pollution.

     

  • loading
  • [1]
    S. Senguttuvan, P. Senthilkumar, V. Janaki, S. Kamala-Kannan, Chemosphere 267 (2021) 129201-129213.
    [2]
    L. Liu, Z. Chen, J. Zhang, D. Shan, Y. Wu, L. Bai, B. Wang, J. Water. Process. Eng. 42 (2021) 102122-102140.
    [3]
    M.M. Bello, A.A. Abdul Raman, A. Asghar, Process. Saf. Environ. 126 (2019) 119-140.
    [4]
    R. Lin, Y. Li, T. Yong, W. Cao, J. Wu, Y. Shen, J. Environ. Manage. 306 (2022) 114460-114474.
    [5]
    B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Environ. Chem. Lett. 16 (2018) 947-967.
    [6]
    R. Javaid, U.Y. Qazi, Int. J. Env. Res. Pub. He. 16 (2019) 2066-2092.
    [7]
    Y. Zhang, C. He, V.K. Sharma, X.-Z. Li, S. Tian, Y. Xiong, Sep. Purif. Technol. 80 (2011) 45-51.
    [8]
    Y. Zhang, Y. Xiong, Y. Tang, Y. Wang, J Hazard Mater 244-245 (2013) 758-764.
    [9]
    A. Shaygan Nia, S. Rana, D. Dohler, F. Jirsa, A. Meister, L. Guadagno, E. Koslowski, M. Bron, W.H. Binder, Chemistry - A European Journal 21 (2015) 10763-10770.
    [10]
    B. Choi, J. Lee, S. Lee, J.H. Ko, K.S. Lee, J. Oh, J. Han, Y.H. Kim, I.S. Choi, S. Park, Macromol. Rapid. Comm. 34 (2013) 533-538.
    [11]
    J. Zhang, E. Wang, S. Cui, S. Yang, X. Zou, Y. Gong, Nano Letters 22 (2022) 1398-1405.
    [12]
    M. Zandieh, J. Liu, Adv. Mater. 36 (2023) 2211041-2211047.
    [13]
    Q. Sun, Z. Dai, X. Liu, N. Sheng, F. Deng, X. Meng, F.-S. Xiao, J. Am. Chem. Soc. 137 (2015) 5204-5209.
    [14]
    P. Pachfule, S. Kandambeth, D. Diaz Diaz, R. Banerjee, Chem. Commun. 50 (2014) 3169-3172.
    [15]
    W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Applied Catalysis B: Environmental 181 (2016) 371-378.
    [16]
    A. Manni, B. Achiou, A. Karim, A. Harrati, C. Sadik, M. Ouammou, S. Alami Younssi, A. El Bouari, J. Environ. Chem. Eng. 8 (2020) 103906-103914.
    [17]
    M. Halakarni, A. Mahto, K. Aruchamy, D. Mondal, S.K. Nataraj, Chem. Eng. J. 417 (2021) 127911-127924.
    [18]
    M. Liu, Q. He, Z. Guo, K. Zhang, S. Yu, C. Gao, Desalination 499 (2021) 114838-114848.
    [19]
    W.-S. Sun, M.-J. Yin, W.-H. Zhang, S. Li, N. Wang, Q.-F. An, Green. Energy. Environ. 8 (2023) 1389-1397.
    [20]
    X. Luo, H. Liang, F. Qu, A. Ding, X. Cheng, C.Y. Tang, G. Li, Chemosphere 200 (2018) 237-247.
    [21]
    J. Tan, Z. Gu, Z. Liu, P. Wang, R. Meijboom, G. Zhang, W. Jin, Green. Energy. Environ. 9 (2024) 1771-1780.
    [22]
    K.V. Plakas, A. Mantza, S.D. Sklari, V.T. Zaspalis, A.J. Karabelas, Chem. Eng. J. 373 (2019) 700-708.
    [23]
    W. Hong, C. Li, T. Tang, H. Xu, Y. Yu, G. Liu, F. Wang, C. Lei, H. Zhu, New. J. Chem. 45 (2021) 2631-2642.
    [24]
    Y. Lan, L. Barthe, A. Azais, C. Causserand, Sep. Purif. Technol. 231 (2020) 115920-115929.
    [25]
    H. Befenzi, A. Ezzariai, T. Mechichi, L. Kouisni, M. Hafidi, E. Record, L.E. Fels, J. Hazard. Mater. Adv. 17 (2025) 100522–100551.
    [26]
    M. Sun, L. Zou, P. Wang, X. Fan, Z. Pan, Y. Liu, C. Song, J. Environ. Chem. Eng. 10 (2022) 107806-107814.
    [27]
    N. Li, X. Lu, M. He, X. Duan, B. Yan, G. Chen, S. Wang, J. Hazard. Mater. 414 (2021) 125478-125495.
    [28]
    Y. Ren, Y. Ma, G. Min, W. Zhang, L. Lv, W. Zhang, Sci. Total. Environ. 762 (2021) 143083-143095.
    [29]
    M. Zhou, J. Chen, S. Yu, B. Chen, C. Chen, L. Shen, B. Li, H. Lin, Chem. Eng. J. 451 (2023) 139009-139029.
    [30]
    D. Xu, C. Li, J. Liu, G. Liu, H. Zhu, H. Zhang, B. Yu, Y. Guo, J. Membr. Sci. 684 (2023) 121874-121884.
    [31]
    S. Zhang, T. Hedtke, Q. Zhu, M. Sun, S. Weon, Y. Zhao, E. Stavitski, M. Elimelech, J.-H. Kim, Environ. Sci. Technol. 55 (2021) 9266-9275.
    [32]
    N. Xu, D. Guo, C. Xiao, J. Appl. Polym. Sci. 136 (2019) 48217-48227.
    [33]
    Z. Xu, T. Wu, J. Shi, K. Teng, W. Wang, M. Ma, J. Li, X. Qian, C. Li, J. Fan, J. Membr. Sci. 520 (2016) 281-293.
    [34]
    Y. Wang, J. Zhang, C. Bao, X. Xu, D. Li, J. Chen, M. Hong, B. Peng, Q. Zhang, J. Membr. Sci. 624 (2021) 119121-119132.
    [35]
    A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li, Y. Yan, J. Mater. Chem. A. 7 (2019) 8491-8502.
    [36]
    L. Wang, W. Wang, N. Graham, M.S. Siddique, H. Yang, W. Yu, J. Clean. Prod. 335 (2022) 130368-130381.
    [37]
    G. Feng, H. Zhang, J. Chen, Z. Fang, X. Hu, J. Environ. Chem. Eng. 13 (2025) 115172-115182.
    [38]
    F.E. Bortot Coelho, C. Gionco, M.C. Paganini, P. Calza, G. Magnacca, Nanomaterials 9 (2019) 534-556.
    [39]
    R. Pietschnig, Chem. Soc. Rev. 45 (2016) 5216-5231.
    [40]
    Q. Wang, S. Tian, P. Ning, Ind. Eng. Chem. Res. 53 (2014) 6334-6340.
    [41]
    D.E. Al Momani, F. Arshad, I. Taha, D.H. Anjum, L. Zou, npj Clean Water 7 (2024) 64-75.
    [42]
    J. Zhang, Y. Wang, M. Hong, B. Peng, C. Bao, X. Xu, D. Li, J. Chen, B. Wang, Q. Zhang, Chem. Eng. J. 464 (2023) 142450-142459.
    [43]
    H.-F. Lu, H.-F. Chen, C.-L. Kao, I. Chao, H.-Y. Chen, Phys. Chem. Chem. Phys. 20 (2018) 22890-22901.
    [44]
    S. Pei, S. Wang, Y. Lu, X. Li, B. Wang, Nano Research 17 (2024) 9446-9471.
    [45]
    Y.J. Sa, J.H. Kim, S.H. Joo, Angew. Chem. Int. Edit. 58 (2018) 1100-1105.
    [46]
    L. Wang, R. Zhang, L. Chen, X. Dai, Y. Yan, J. Pan, J. Dai, J. Membr. Sci. 685 (2023) 121971–121984.
    [47]
    Y. Chen, S.-C. Wu, J.-J. Han, X. Yan, X.-J. Guo, W.-Z. Lang, J. Membr. Sci. 687 (2023) 122098–122106.
    [48]
    F. Wahid, S. Wang, M. Yan, Y. Zhang, X. Dai, Q. Tian, J. Membr. Sci. 722 (2025) 123911–123922.
    [49]
    L. Zhang, W. Kong, X. Lan, N. Yang, B. Jiang, L. Zhang, R. Wang, J. Membr. Sci. 706 (2024) 122958–122970.
    [50]
    C. Xu, S. Xu, J. Song, N. Jiang, M. Yan, J. Li, M. Huang, J. Membr. Sci. 683 (2023) 121785–121793.
    [51]
    M. Huang, H. Zhang, S. Wu, J. Liu, P. Yu, W. Li, X. Zhang, W. Wang, R. Yuan, J. Membr. Sci. 719 (2025) 123744–123758.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return