Volume 10 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
Dedan Duan, Huiping Song, Xiaojuan Du, Quan An, Huaigang Cheng, Fangqin Cheng, Junpeng Xie, Yongzhen Yang. CO2 and ethylene vinyl acetate co-modification of solid waste-based filling materials: An integrated approach for carbon capture and recycling. Green Energy&Environment, 2025, 10(11): 2279-2296. doi: 10.1016/j.gee.2025.05.005
Citation: Dedan Duan, Huiping Song, Xiaojuan Du, Quan An, Huaigang Cheng, Fangqin Cheng, Junpeng Xie, Yongzhen Yang. CO2 and ethylene vinyl acetate co-modification of solid waste-based filling materials: An integrated approach for carbon capture and recycling. Green Energy&Environment, 2025, 10(11): 2279-2296. doi: 10.1016/j.gee.2025.05.005

CO2 and ethylene vinyl acetate co-modification of solid waste-based filling materials: An integrated approach for carbon capture and recycling

doi: 10.1016/j.gee.2025.05.005
  • To improve the rigidity and flexibility of conventional grouting materials, one visionary approach is to replace Portland cement with a composite cementitious system containing circulating fluidized bed fly ash (CFBFA) and calcium carbide slag (CS), while adding ethylene-vinyl acetate (EVA) copolymer and CO2 as modifiers to enhance its properties. In this research, CFBFA and CS assumed the role of cementitious constituents, with EVA and CO2 serving as the modifying agent. A comprehensive exploration of the mechanism underlying the CO2 + EVA modified composite cementitious system was undertaken, delving into the differences of its compressive, bending, and flexural strengths. The addition of CO2 further improved the flexibility and rigidity of the materials and effectively improve the material's microstructure. It was worth noting that when CO2 + EVA co-modified CFBFA-CS composite cementitious materials, the flexibility and rigidity of the cementitious materials were significantly enhanced, and the bending strength, flexural strength and compressive strength were significantly increased by 48.76%, 166.7% and 40.56%, respectively, and the 28 d density was reduced by 6.91%. These results provided a theoretical basis for the realization of avant-garde cementitious materials with functional properties.

     

  • loading
  • [1]
    T.F. Chen, Y.L. Gao, Y.L. Li, J.C. Zhu, Z.D. Cheng, H.Y. Xiong, Constr. Build. Mater. 449 (2024) 138454.
    [2]
    X.W. Gu, X.W. Ge, J.P. Liu, G. Song, S.Y. Wang, Z.Y. Hu, H. Wang, Constr. Build. Mater. 412 (2024) 134706.
    [3]
    S.J. Yan, D.W. Pan, J.M. Dan, J.Y. Wang, Y. Yu, Cement Concrete Comp. 140 (2023) 105081.
    [4]
    Y. Li, L.H. Gao, W.L. Zhan, Z.J. He, J.H. Zhang, X.M. Hou, J. Clean. Prod. 349 (2022) 131369.
    [5]
    Q. Wang, H.Z. Guo, T. Yu, P. Yuan, L.L. Deng, B.F. Zhang, Materials. 15 (2022) 973.
    [6]
    S. Puntana, T. Weerachart, J. Chai, R. Ubolluk, J. Peerapong, Constr. Build. Mater. 312 (2021) 125438.
    [7]
    D. Saofee, T. Weerachart, S. Piti, C. Prinya, J. Chai, J. Mater. Res. Technol. 8 (2019) 4757-4765.
    [8]
    N. Charin, T. Weerachart, J. Chai, Cement Concrete Comp. 89 (2018) 31-40.
    [9]
    Y.Q. Jin, S.J. Zhang, S.P. Peng, W.F. Du, Y. Li, J. Build. Eng. 104 (2025) 112334.
    [10]
    D.D. Duan, H.P. Song, F. Wei, Z.J. Feng, H.G. Cheng,F.Q. Cheng, Constr. Build. Mater. 426 (2024) 136187.
    [11]
    J.J. Wang, K.X. Fan, J.H. Du, J.L. Xu, X.Y. Dong, X.L. Li, Y.S. Ding, Constr. Build. Mater. 387 (2023) 131585.
    [12]
    J. Zec, N.Z. Tomic, M. Zrilic, S. Levic, A. Marinkovic, R.J. Heinemann, Compos. Part B-Eng. 153 (2018) 36-48.
    [13]
    E. Sakai, K. Nakajima, T. Kubokawa, S. Sotokawa, M. Daimon, Constr. Build. Mater. 110 (2016) 333-336.
    [14]
    K. Chen, Z.X. Xie, L.Y. Chu, J. Wu, L.M. Shen, N.Z. Bao, Compos. Sci. Technol. 248 (2024) 110434.
    [15]
    R. Liang, Q. Liu, D.S. Hou, Z.J. Li, G.X. Sun, Cement Concrete Res. 152 (2022) 106675.
    [16]
    B. Thanon, P. Jitsangiam, K. Nusit, U. Rattanasak, P. Chindaprasirt, Case Stud. Constr. Mat. 21 (2024) e3760.
    [17]
    K. Li, H.J. Zhu, Z.H. Zhang, Z.Y. Zhu, Z.F. Yin, Q.S. Wu, Z.H. Li, Compos. Part B-Eng. 280 (2024) 111461.
    [18]
    H.P. Song, F. Wei, F.Q. Cheng, D.D. Duan, H.B. Wu, Y.Y. Gao, W.J. Li, J. Build. Eng. 88 (2024) 109194.
    [19]
    K.I. Rakibul, A. Warda, O. Jan, Cement Concrete Res.147 (2021) 106501.
    [20]
    A. Mansourian, A.R. Goahri, F.K. Khosrowshahi, Constr. Build. Mater. 208 (2019) 554-563.
    [21]
    Y.D. Xu, Z. Wan, B. Savija, Developments in the Built Environment. 19 (2024) 100522.
    [22]
    L.M.B. Costa, H.M.R.D. Silva, J. Peralta, J.R.M. Oliveira, Constr. Build. Mater. 198 (2019) 237-244.
    [23]
    X. Shi, J.J. Cheng, L.L. Xu, T. Feng, J. Han, P. Zhang, Z.M. Guo, J. Build. Eng. 49 (2022) 104050.
    [24]
    K.Z. Yan, J.H. Chen, L.Y. You, S. Tian, J. Clean. Prod. 258 (2020) 120732.
    [25]
    R. Xu, F.X. Zhu, L. Zou, S.Q. Wang, Y.F. Liu, J.L. Hou, C.H. Li, K.T. Song, L.Z. Kong, L.P. Cui, Z.Q. Wang, Green Energy Environ. 9 (2024) 1679-1697.
    [26]
    Y. Peng, G.R. Zhao, Y.X. Qi, Q. Zeng, Cement Concrete Comp. 114 (2020) 103821.
    [27]
    T. Josef, H. Frank, Cement Concrete Res. 33 (2003) 1063-1070.
    [28]
    Y.X. Wang, J.H. Wu, Polymers-Basel. 16 (2024) 2665.
    [29]
    A. Picker, L. Nicoleau, A. Nonat, C. Labbez, H. Colfen, Cement Concrete Res. 174 (2023) 107329.
    [30]
    X.N. Ge, X. Hu, H. Li, C.J. Shi, Cement Concrete Comp. 145 (2024) 105368.
    [31]
    B. Yuan, Y.G. Yang, Y.Q. Wang, K.M. Zhang, Constr. Build. Mater.146 (2017) 563-570.
    [32]
    G.C. Sang, Y.Y. Zhu, G. Yang, Constr. Build. Mater.112 (2016) 648-653.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return