Volume 10 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
Rongrong Wang, Junfeng Lu, Wenjia Guo, Hao Dong, Nailiang Yang, Hua Li, Yanlei Wang, Jianmei Lu. High-performance moisture-driven power generators based on in-situ confined polymerized ionic liquid membranes. Green Energy&Environment, 2025, 10(12): 2453-2460. doi: 10.1016/j.gee.2025.05.004
Citation: Rongrong Wang, Junfeng Lu, Wenjia Guo, Hao Dong, Nailiang Yang, Hua Li, Yanlei Wang, Jianmei Lu. High-performance moisture-driven power generators based on in-situ confined polymerized ionic liquid membranes. Green Energy&Environment, 2025, 10(12): 2453-2460. doi: 10.1016/j.gee.2025.05.004

High-performance moisture-driven power generators based on in-situ confined polymerized ionic liquid membranes

doi: 10.1016/j.gee.2025.05.004
  • Harvesting energy from humid air to generate electricity represents a promising strategy for sustainable power generation. However, achieving high output and long-term stability in moisture-driven power generators (MPGs) remains a significant challenge. Here, we develop an efficient MPG by incorporating polymerized ionic liquid (PIL) and MXene through in-situ polymerization of cationic long chains within the MXene layers. This structural design enhances the hydrophilicity and ion dynamics, ensuring stable and sustained electrical output. A single MPG device delivers an open-circuit voltage of 0.65 V and a power density of 14.87 μW·cm−2, operating continuously for over 36 h. Surface characterization and quantum chemistry calculations elucidate that the mobile anions within the MPG move directionally under moisture gradients, while polymerized cations remain stationary, driving power generation. The MPG exhibits exceptional long-term stability, retaining about 80% of its initial voltage output after 30 days. Moreover, these MPGs demonstrate scalability for practical applications, capable of efficiently charging capacitors and powering LEDs through simple series-parallel configurations. This work offers a promising strategy to simultaneously enhance the performance and operational stability of MPGs, offering a sustainable solution for the direct conversion of low-grade thermal energy from moisture into clean electricity.

     

  • loading
  • [1]
    A. Chu, M. Yang, J. Chen, J. Zhao, J. Fang, Z. Yang, H. Li, Green Energy Environ. 9 (2024) 1698-1710.
    [2]
    X. Liu, H. Gao, J.E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D.R. Lovley, J. Yao, Nature 578 (2020) 550-554.
    [3]
    Y. Zhang, S. Guo, Z.G. Yu, H. Qu, W. Sun, J. Yang, L. Suresh, X. Zhang, J.J. Koh, S.C. Tan, Adv. Mater. 34 (2022) 2201228.
    [4]
    Y. Huang, K. Zhou, H. Cheng, T. He, H. Wang, J. Bai, C. Yang, T. Guang, H. Yao, F. Li, G. Hou, Z. Xu, L. Qu, Adv. Funct. Mater. 34 (2024) 2308620.
    [5]
    H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng, C. Li, D. Xie, P. Yang, Y. Zhang, L. Qu, Nat. Nanotechnol. 16 (2021) 811-819.
    [6]
    Q. Li, Y. Qin, D. Cheng, M. Cheng, H. Zhao, L. Li, S. Qu, J. Tan, J. Ding, Adv. Funct. Mater. 33 (2023) 2211013.
    [7]
    X. Chen, Y. Liu, Y. Sun, T. Zhao, C. Zhao, T.A. Khattab, E.G. Lim, X. Sun, Z. Wen, Nano Energy 98 (2022), 107236.
    [8]
    J. Fang, X. Zhang, P. Duan, Z. Jiang, X. Lu, C. Fu, Y. Zhang, Y. Yao, K. Shang, J. Qin, Y. Liu, T. Yang, Mater. Horiz. 11 (2024) 1261-1271.
    [9]
    C. Liu, Z. Feng, T. Yin, T. Wan, P. Guan, M. Li, L. Hu, C.-H. Lin, Z. Han, H. Xu, W. Chen, T. Wu, G. Liu, Y. Zhou, S. Peng, C. Wang, D. Chu, Adv. Mater. 36 (2024) 2403791.
    [10]
    M. Han, D. Zhang, C.E. Shuck, B. Mcbride, T. Zhang, R. Wang, K. Shevchuk, Y. Gogotsi, Nat. Nanotechnol. 18 (2023) 373-379.
    [11]
    X. Zheng, S. Zhang, M. Zhou, H. Lu, S. Guo, Y. Zhang, C. Li, S.C. Tan, Adv. Funct. Mater. 33 (2023) 2214880.
    [12]
    Y. Wang, Y. Wang, C. Liu, D. Shi, W. Dong, B. Peng, L. Dong, M. Chen, Green Energy Environ. 9 (2024) 1058-1067.
    [13]
    T. Yuan, Z. Zhang, Q. Liu, X.-T. Liu, S.-Q. Tao, C.-L. Yao, Int. J. Biol. Macromol. 262 (2024) 130119.
    [14]
    K. Zhao, J.W. Lee, Z.G. Yu, W. Jiang, J.W. Oh, G. Kim, H. Han, Y. Kim, K. Lee, S. Lee, H. Kim, T. Kim, C.E. Lee, H. Lee, J. Jang, J.W. Park, Y.-W. Zhang, C. Park, ACS Nano 17 (2023) 5472-5485.
    [15]
    C. Liu, T. Wan, P. Guan, M. Li, S. Zhang, L. Hu, Y.-C. Kuo, Z. Feng, F. Chen, Y. Zhu, H. Jia, T. Cao, T. Liang, T. Kumeria, D. Su, D. Chu, Adv. Energy Mater. 14 (2024) 2400590.
    [16]
    S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Chem. Rev. 117 (2017) 6755-6833.
    [17]
    K. Li, Y. Wang, C. Wang, F. Huo, S. Zhang, H. He, J. Am. Chem. Soc. 146 (2024) 25569-25577.
    [18]
    L. Zhou, M. Zhang, Y. Huo, L. Bai, S. He, J. Wang, C. Jia, X. Guo, Green Energy Environ. 9 (2024) 1784-1801.
    [19]
    M. Wang, Y. Wang, Y. Han, H. Dong, F. Huo, H. He, Nano Energy 123 (2024) 109376.
    [20]
    D. Lv, S. Zheng, C. Cao, K. Li, L. Ai, X. Li, Z. Yang, Z. Xu, X. Yao, Energy Environ. Sci. 15 (2022) 2601-2609.
    [21]
    H.J. Hwang, K.Y. Kim, J.S. Kim, T. Kim, D.H. Kim, Y. Lee, D. Choi, Nano Energy 125 (2024) 109535.
    [22]
    H. Dong, Y. Wang, W. Ding, Y. Qiu, H. He, Sep. Purif. Technol. 354 (2025) 129158.
    [23]
    D. Yu, Y. Cui, S. Wang, X. Wang, Z. Yong, H. Sun, X. Wang, C. Li, F. Pan, Z. Wang, Int. J. Hydrogen Energy 48 (2023) 9023-9036.
    [24]
    F. Liu, S. Ma, S. Wang, J. Li, X. Wang, Z. Yong, Y. Cui, D. Liang, Z. Wang, Int. J. Hydrogen Energy 47 (2022) 22522-22531.
    [25]
    Y. Han, Y. Wang, M. Wang, H. Dong, Y. Nie, S. Zhang, H. He, Adv. Mater. 36 (2024) 2312209.
    [26]
    M. Wang, Q. Zou, X. Dong, N. Xu, R. Shao, J. Ding, Y. Zhang, J. Qiao, Green Energy Environ. 8 (2023) 893-903.
    [27]
    M. Guo, J. Fang, H. Xu, W. Li, X. Lu, C. Lan, K. Li, J. Membr. Sci. 362 (2010) 97-104.
    [28]
    L. Ding, Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.-X. Ding, S. Wang, J. Caro, Y. Gogotsi, Nat. Commun. 9 (2018) 155.
    [29]
    L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, Angew. Chem., Int. Ed. 56 (2017) 1825-1829.
    [30]
    N.S. Naik, M. Padaki, S. Deon, D.H.K. Murthy, Chem. Eng. J. 401 (2020) 126148.
    [31]
    T. Lei, J. Pan, N. Wang, Z. Xia, Q. Zhang, J. Fan, L. Tao, W. Shou, Y. Gao, Mater. Horiz. 11 (2024) 1234-1250.
    [32]
    X. Zhang, X. Liu, W. Zhang, Y. Song, Green Energy Environ. 8 (2023) 354-359.
    [33]
    M. He, C. Shu, R. Zheng, W. Xiang, A. Hu, Y. Yan, Z. Ran, M. Li, X. Wen, T. Zeng, J. Long, Green Energy Environ. 8 (2023) 318-330.
    [34]
    Y. Cheng, C. Yang, T. Zhu, C. Wu, J. Huang, Y. Lai, Adv. Funct. Mater. 34 (2024) 2415533.
    [35]
    J. Zhang, J. Zhuang, L. Lei, Y. Hou, J. Mater. Chem. A. 11 (2023) 3546-3555.
    [36]
    D. Maity, M. Fussenegger, Adv. Sci. 10 (2023) 2300750.
    [37]
    X. Zhang, M. Wang, Y. Wu, X. Chen, K. Wu, Q. Fu, H. Deng, Adv. Funct. Mater. 33 (2023) 2210027.
    [38]
    M. Li, L. Zong, W. Yang, X. Li, J. You, X. Wu, Z. Li, C. Li, Adv. Funct. Mater. 29 (2019) 1901798.
    [39]
    Y. Yao, X. Lu, C. Fu, Y. Zhang, J. Fang, J. Qin, Q.-C. He, T. Yang, Adv. Funct. Mater. (2023) 2311465.
    [40]
    L. Li, S. Feng, Y. Bai, X. Yang, M. Liu, M. Hao, S. Wang, Y. Wu, F. Sun, Z. Liu, T. Zhang, Nat. Commun. 13 (2022) 1043.
    [41]
    C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen, W. Liu, Science 368 (2020) 1091-1098.
    [42]
    J. Bai, Y. Hu, T. Guang, K. Zhu, H. Wang, H. Cheng, F. Liu, L. Qu, Energy Environ. Sci. 15 (2022) 3086-3096.
    [43]
    X. Wen, Z. Sun, X. Xie, Q. Zhou, H. Liu, L. Wang, X. Qin, S.C. Tan, Adv. Funct. Mater. 34 (2024) 2470059.
    [44]
    W. He, P. Li, H. Wang, Y. Hu, B. Lu, C. Weng, H. Cheng, L. Qu, ACS Nano 18 (2024) 12096-12104.
    [45]
    M. Chen, S. Li, S. Guo, H. Yan, S.C. Tan, Green Energy Environ. 9 (2024) 1812-1821.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return