Volume 10 Issue 5
May  2025
Turn off MathJax
Article Contents
Chao Jiang, Xiaoli Liu, Xingpeng Wang, Qihui Wang, Huiyu Li, Weiliang Tian, Saeed Ahmed, Yongjun Feng. Coupling adsorption and in-situ Fenton-like oxidation by iron-containing low-grade attapulgite clay towards organic pollutant removal: From batch experiment to continuous operation. Green Energy&Environment, 2025, 10(5): 1015-1026. doi: 10.1016/j.gee.2024.10.004
Citation: Chao Jiang, Xiaoli Liu, Xingpeng Wang, Qihui Wang, Huiyu Li, Weiliang Tian, Saeed Ahmed, Yongjun Feng. Coupling adsorption and in-situ Fenton-like oxidation by iron-containing low-grade attapulgite clay towards organic pollutant removal: From batch experiment to continuous operation. Green Energy&Environment, 2025, 10(5): 1015-1026. doi: 10.1016/j.gee.2024.10.004

Coupling adsorption and in-situ Fenton-like oxidation by iron-containing low-grade attapulgite clay towards organic pollutant removal: From batch experiment to continuous operation

doi: 10.1016/j.gee.2024.10.004
  • Coupling adsorption and in-situ Fenton-like oxidation process was developed for Methylene blue (MB) using refined iron-containing low-grade attapulgite (ATP) clay, and the removal mechanism was investigated. The MB was initially adsorbed on the porous ATPs, and then the enriched MB was removed by the H2O2-assisted Fenton-like oxidation with the iron-containing ATP catalyst. Under optimal conditions, the ATP powder exhibits the maximum removal efficiency of 100% with negligible iron leaching (1.5 mg L-1) and no sludge formation. Furthermore, polysulfone/ATP (PSF/ATP) pellets were fabricated through a water-induced phase separation process to construct a fixed-bed reactor (FBR) for continuous contaminant removal. For the first cycle, the maximum adsorption capacity was 15.5 L with an outlet MB concentration of 1.973 mg L-1 (< 2 mg L-1, GB4287-2012) using the PSF/ATP pellets containing 50.0 g of ATP powders, and the maximum Fenton-like oxidation capacity was 35.5 L with the outlet concentration of 0.831 mg L-1. After five cycles, the total treated volume of the MB solution was ca. 255 L, and the efficiency remained above 99%. After 10 h of continuous treatment towards practical resin industrial wastewater, the chemical oxygen demand (COD) removal efficiency was still measured at 83.05%, costing 0.398 $ m-3. These results demonstrate the practical applicability of iron-containing low-grade ATP clay for textile water treatment.

     

  • loading
  • [1]
    Y.L. Zhao, S.C. Kang, L. Qin, W. Wang, T.T. Zhang, S.X. Song, S. Komarneni, Chem. Eng. J. 379 (2020) 122322.
    [2]
    H.M. Solayman, M.A. Hossen, A.A. Aziz, N.Y. Yahya, K.H. Leong, L.C. Sim, M.U. Monir, K.D. Zoh, J. Environ. Chem. Eng. 11 (2023) 109610.
    [3]
    Z. Wang, C. Fang, M. Megharaj, ACS Sustain. Chem. Eng. 2 (2014) 1022-1025.
    [4]
    M. Ahmed, M.O. Mavukkandy, A. Giwa, M. Elektorowicz, E. Katsou, O. Khelifi, V. Naddeo, S.W. Hasan, NPJ Clean Water 5 (2022) 12.
    [5]
    H. Yin, C. Ren, W. Li, Chem. Eng. J. (Amsterdam, Neth.) 348 (2018) 704-712.
    [6]
    Y. Wu, Y. Kang, L. Zhang, D. Qu, X. Cheng, L. Feng, J. Environ. Sci. (China) 65 (2018) 253-261.
    [7]
    J. Liu, H.S. Ou, C.H. Wei, H.Z. Wu, J.Z. He, D.H. Lu, J. Water Process Eng. 10 (2016) 98-103.
    [8]
    A.Y. Zhang, N.H. Huang, C. Zhang, P.C. Zhao, T. Lin, Y.Y. He, J.W. Feng, Chem. Eng. J. 344 (2018) 1-11.
    [9]
    X. Li, W. Zhu, X. Lu, S. Zuo, C. Yao, C. Ni, Chem. Eng. J. 326 (2017) 87-98.
    [10]
    Y. Ni, C. Zhou, M. Xing, Y. Zhou, Green Energy Environ. 9 (2024) 417-434.
    [11]
    B.O. Unal, Z. Bilici, N. Ugur, Z. Isik, E. Harputlu, N. Dizge, K. Ocakoglu, J. Water Process Eng. 32 (2019) 100897.
    [12]
    A.M. Mesquita, I.R. Guimaraes, G.M.M.D. Castro, M.A. Goncalves, T.C. Ramalho, M.C. Guerreiro, Appl. Catal. B Environ. 192 (2016) 286-295.
    [13]
    P. Zhou, Z. Dai, T. Lu, X. Ru, M.A. Ofori, W. Yang, J. Hou, H. Jin, Catalysts, 12 (2022) 669.
    [14]
    C. Wang, R. Sun, R. Huang, J. Clean. Prod. 297 (2021) 126681.
    [15]
    L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, M. Xing, Angew. Chem. Int. Ed. 59 (2020) 13968-13976.
    [16]
    S. Guo, D.G. Evans, D. Li, X. Duan, AIChE J. 55 (2009) 2024-2034.
    [17]
    J.Y. L. Li, P. Xiao, S. Jin, H. Wang, Colloid Polym. Sci. 291 (2013) 2711-2717.
    [18]
    X.B. Fan, L.L. Peng, X.H. Wang, S.Q. Han, L.Z. Yang, H.L. Wang, Ind. Prod. 183 (2022) 114966.
    [19]
    W. Wang, W. Dong, G. Tian, L. Sun, Q. Wang, A. Hui, B. Mu, A. Wang, Powder Technol. 354 (2019) 1-10.
    [20]
    Y. Lu, H. Zhang, Q. Wang, A. Wang, Appl. Clay Sci. 228 (2022) 106594.
    [21]
    Y. Tan, C. Yin, S. Zheng, Y. Di, Z. Sun, C. Li, Appl. Clay Sci. 215 (2021) 106319.
    [22]
    S. Zuo, H. Zhang, X. Li, C. Han, C. Yao, C. Ni, ACS Sustain. Chem. Eng. 10 (2022) 1440-1450.
    [23]
    Y. Lu, W. Wang, J. Xu, J. Ding, Q. Wang, A. Wang, Appl. Clay Sci. 198 (2020) 105848.
    [24]
    Q. Gan, H. Hou, S. Liang, J. Qiu, S. Tao, L. Yang, W. Yu, K. Xiao, B. Liu, J. Hu, Y. Wang, J. Yang, Sci. Total Environ. 75 (2020) 138299.
    [25]
    Y. Lu, W. Wang, Q. Wang, J. Xu, A. Wang, Appl. Clay Sci. 183 (2019) 105301.
    [26]
    Z. Xu, S. Gong, W. Ji, S. Zhang, Z. Bao, Z. Zhao, Z. Wei, X. Zhong, Z.T. Hu, J. Wang, Chem. Eng. J. 446 (2022) 137009.
    [27]
    W. Wang, W. Zhao, H. Zhang, J. Xu, L. Zong, Y. Kang, A. Wang, Powder Technol. 390 (2021) 303-314.
    [28]
    L.Z. Yang, L. Bao, Y. Zhong, C. Hao, J.J. Chen, J.B. Wu, X.H. Wang, J. Clean. Prod. 434 (2024) 139831.
    [29]
    X.B. Fan, X.H. Wang, Y.T. Gai, H.H. Xie, S.Q. Han, C. Hao, J. Hazard Mater. 423 (2022) 127191.
    [30]
    X. Zhang, B. Xu, S. Wang, X. Li, C. Wang, B. Liu, F. Han, Y. Xu, P. Yu, Y. Sun, Chem. Eng. J. 431 (2022) 133477.
    [31]
    J. Wu, Z. Lin, X. Weng, G. Owens, Z. Chen, Chemosphere 246 (2020) 125700.
    [32]
    P. Zhou, F. Cheng, G. Nie, Y. Yang, K.S. Hu, X. Duan, Y. Zhang, S. Wang, Green Energy Environ. 5 (2022) 414-422.
    [33]
    Q.S. Wu, M.S. Siddique, W.Z. Yu, J. Hazard Mater. 401 (2021) 123261.
    [34]
    F. Furia, M. Minella, F. Gosetti, F. Turci, R. Sabatino, A.D. Cesare, G. Corno, D. Vione, Chemosphere 283 (2021) 131170.
    [35]
    M. Gao, D. Zhang, W. Li, J. Chang, Q. Lin, D. Xu, H. Ma, J. Taiwan Inst. Chem. Eng. 67 (2016) 355-361.
    [36]
    S. Yang, H. He, D. Wu, D. Chen, X. Liang, Appl. Catal. B Environ. 89 (2009) 527-535.
    [37]
    S. Tian, J. Zhang, J. Chen, L. Kong, J. Lu, F. Ding, Y. Xiong, Ind. Eng. Chem. Res. 52 (2013) 13333-13341.
    [38]
    Y. Zhao, S. Kang, L. Qin, W. Wang, T. Zhang, S. Song, S. Komarneni, Chem. Eng. J. 379 (2020) 122322.
    [39]
    A.G. Cordova, S.V. Verdaguer, P. Tartaj, E. Mazario, M.P. Morales, J.G. Ovejero, Nanomaterials 11 (2021) 1052.
    [40]
    J.M. Hong, B. Lin, J.S. Jiang, B.Y. Chen, C.T. Chang, J. Ind. Eng. Chem. 20 (2014) 3667-3671.
    [41]
    J.L. Liu, F.X. An, M. Li, L. Yang, J.Z. Wan, S.T. Zhang, Bull. Environ. Contam. Toxicol. 107 (2021) 255-262.
    [42]
    C. Liu, D. Zhou, J. Wang, Environ. Sci. Pollut. Res. Int. 23 (2016) 20893-20903.
    [43]
    F. Xiao, W. Li, L. Fang, D. Wang, J. Hazard Mater. 308 (2016) 11-20.
    [44]
    H. Qin, Y. He, P. Xu, Y. Zhu, H. Wang, Z. Wang, Y. Zhao, H. Xie, Q. Tian, C. Wang, Y. Zeng, Y. Li, Green Energy Environ. 9 (2024) 732-747.
    [45]
    M. Arshadi, M.K. Abdolmaleki, H. Eskandarloo, M. Azizi, A. Abbaspourrad, ACS Sustain. Chem. Eng. 6 (2018) 11662-11676.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return