Volume 8 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Kaixuan Li, Ping Li, Zining Sun, Jing Shi, Minghua Huang, Jingwei Chen, Shuai Liu, Zhicheng Shi, Huanlei Wang. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy&Environment, 2023, 8(4): 1091-1101. doi: 10.1016/j.gee.2022.01.002
Citation: Kaixuan Li, Ping Li, Zining Sun, Jing Shi, Minghua Huang, Jingwei Chen, Shuai Liu, Zhicheng Shi, Huanlei Wang. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy&Environment, 2023, 8(4): 1091-1101. doi: 10.1016/j.gee.2022.01.002

All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability

doi: 10.1016/j.gee.2022.01.002
  • The key to construct high-energy supercapacitors is to maximize the capacitance of electrode and the voltage of the device. Realizing this purpose by utilizing sustainable and low-cost resources is still a big challenge. Herein, N, B co-doped carbon nanosheets are obtained through the proposed dual-template assisted approach by using methyl cellulose as the precursor. Due to the synergistic effects form the high surface area with the hierarchical porous structure, N/B dual doping, and a high degree of graphitization, the resultant carbon electrode exhibits a high capacitance of 572 F g-1 at 0.5 A g-1 and retains 281 F g-1 at 50 A g-1 in an acidic electrolyte. Furthermore, the symmetric device assembled using bacterial cellulose-based gel polymer electrolyte can deliver high energy density of 43 W h kg-1 and excellent cyclability with 97.8% capacity retention after 20 000 cycles in “water in salt” electrolyte. This work successfully realizes the fabrication of high-performance all-cellulose-based quasi-solid-state supercapacitors, which brings a cost-effective insight into jointly designing electrodes and electrolytes for supporting highly efficient energy storage.

     

  • loading
  • [1]
    Q. Li, Z. Dai, J. Wu, W. Liu, T. Di, R. Jiang, X. Zheng, W. Wang, X. Ji, P. Li, Z. Xu, X. Qu, Z. Xu, J. Zhou, Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor, Adv. Energy Mater. 10 (2020) 1903750.
    [2]
    S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, S. Angaiah, Research progress in rare earths and their composites based electrode materials for supercapacitors, Green Energy Environ. 5 (2020) 259-273.
    [3]
    X. Deng, Y. Jiang, Z. Wei, M. Mao, R. Pothu, H. Wang, C. Wang, J. Liu, J. Ma, Flexible quasi-solid-state dual-ion asymmetric supercapacitor based on Ni(OH)2 and Nb2O5 nanosheet arrays, Green Energy Environ. 4 (2019) 382-390.
    [4]
    B. Anothumakkool, R. Soni, S.N. Bhange, S. Kurungot, Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor, Energy Environ. Sci. 8 (2015) 1339-1347.
    [5]
    C. Wang, B. Yan, J. Zheng, L. Feng, Z. Chen, Q. Zhang, T. Liao, J. Chen, S. Jiang, C. Du, S. He, Adv. Power Mater. 1 (2022) 100018.
    [6]
    Z. Lu, X. Xu, Y. Chen, X. Wang, L. Sun, K. Zhuo, Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors, Green Energy Environ. 5 (2020) 69-75.
    [7]
    B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors, Nano Energy 27 (2016) 482-491.
    [8]
    M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage, Nat. Commun. 7 (2016) 12647.
    [9]
    M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy 1(6) (2016).
    [10]
    P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater. 19 (2020) 1151-1163.
    [11]
    D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem.-Int. Edit. 47 (2008) 373-376.
    [12]
    L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors, J. Mater. Chem. A 1 (2013), 6462-6470.
    [13]
    Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu, Z. Kou, Z. Zhang, Z. Chen, F. Gao, Y. Hou, N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: A universal synthesis and multifunctional applications, Nano Energy 28 (2016) 346-355.
    [14]
    P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C.P. Wong, A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode, Nanoscale 6 (2014) 12120-12129.
    [15]
    P. Dai, Y. Xue, S. Zhang, L. Cao, D. Tang, X. Gu, L. Li, X. Wang, X. Jiang, D. Liu, L. Kong, Y. Bando, D. Golberg, X. Zhao, Paper-derived flexible 3D interconnected carbon microfiber networks with controllable pore sizes for supercapacitors, ACS Appl. Mater. Interfaces 10 (2018) 37046-37056.
    [16]
    Z. Shang, X. An, H. Zhang, M. Shen, F. Baker, Y. Liu, L. Liu, J. Yang, H. Cao, Q. Xu, H. Liu, Y. Ni, Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor, Carbon 161 (2020) 62-70.
    [17]
    Q. Dou, Y. Lu, L. Su, X. Zhang, S. Lei, X. Bu, L. Liu, D. Xiao, J. Chen, S. Shi, X. Yan, A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor, Energy Storage Mater. 23 (2019) 603-609.
    [18]
    J. Park, J. Lee, W. Kim, Water-in-salt electrolyte enables ultrafast supercapacitors for AC line filtering, ACS Energy Lett. 6(2) (2021) 769-777.
    [19]
    L. Liu, Q. Dou, Y. Sun, Y. Lu, Q. Zhang, J. Meng, X. Zhang, S. Shi, X. Yan, A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures, J. Mater. Chem. A 7 (2019) 20398-20404.
    [20]
    P. Sennu, R. Chua, S.S.H. Dintakurti, J.V. Hanna, R.O. Ramabhadran, V. Aravindan, S. Madhavi, Supersaturated “water-in-salt” hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation, J. Power Sources 472 (2020) 228558.
    [21]
    Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, X. Yan, Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte, Energy Environ. Sci. 11 (2018) 3212-3219.
    [22]
    L. Gao, L. Xiong, D. Xu, J. Cai, L. Huang, J. Zhou, L. Zhang, Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors, ACS Appl. Mater. Interfaces 10 (2018) 28918-28927.
    [23]
    H. Zhang, Z. Zhang, X. Qi, J. Yu, J. Cai, Z. Yang, Manganese monoxide/biomass-inherited porous carbon nanostructure composite based on the high water-absorbent agaric for asymmetric supercapacitor, ACS Sustain. Chem. Eng. 7 (2019) 4284-4294.
    [24]
    J. You, M. Li, B. Ding, X. Wu, C. Li, Crab chitin-based 2D soft nanomaterials for fully biobased electric devices, Adv. Mater. 29 (2017) 1606895.
    [25]
    Q. Jin, W. Li, K. Wang, H. Li, P. Feng, Z. Zhang, W. Wang, K. Jiang, Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage, Adv. Funct. Mater. 30 (2020) 1909907.
    [26]
    W. Wei, Y. Zheng, M. Huang, J. Shi, L. Li, Z. Shi, S. Liu, H. Wang, A new strategy for achieving high K+ storage capacity with fast kinetics: realizing covalent sulfur-rich carbon by phosphorous doping, Nanoscale 13 (2021) 4911-4920.
    [27]
    R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994.
    [28]
    L. Chen, J.Y. Zhu, C. Baez, P. Kitin, T. Elder, Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids, Green Chem. 18 (2016) 3835-3843.
    [29]
    G. Zheng, Z. Huang, Z. Liu, Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors, J. Power Sources 482 (2021) 228935.
    [30]
    F. Wang, J.Y. Cheong, J. Lee, J. Ahn, G. Duan, H. Chen, Q. Zhang, I.D. Kim, S. Jiang, Pyrolysis of enzymolysis-treated wood: hierarchically assembled porous carbon electrode for advanced energy storage devices, Adv. Funct. Mater. (2021) 2101077.
    [31]
    H.H. Rana, J.H. Park, G.S. Gund, H.S. Park, Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors, Energy Storage Mater. 25 (2020) 70-75.
    [32]
    Z. Xun, S. Ni, Z. Gao, Y. Zhang, J. Gu, P. Huo, Construction of polymer electrolyte based on soybean protein isolate and hydroxyethyl cellulose for a flexible solid-state supercapacitor, Polymers 11 (2019) 1895.
    [33]
    D. Fang, J. Zhou, L. Sheng, W. Tang, J. Tang, Juglone bonded carbon nanotubes interweaving cellulose nanofibers as self-standing membrane electrodes for flexible high energy supercapacitors, Chem. Eng. J. 396 (2020) 125325.
    [34]
    D. Xu, B. Wang, Q. Wang, S. Gu, W. Li, J. Jin, C. Chen, Z. Wen, High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries, ACS Appl. Mater. Interfaces 10 (2018) 17809-17819.
    [35]
    Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Sustainable synthesis and assembly of biomass-derived b/n co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors, Adv. Funct. Mater. 26 (2016) 111-119.
    [36]
    A.R. Selvaraj, A. Muthusamy, C. Inho, H.-J. Kim, K. Senthil, K. Prabakar, Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors, Carbon 174 (2021) 463-474.
    [37]
    M. Fu, R. Lv, Y. Lei, M. Terrones, Ultralight flexible electrodes of nitrogen-doped carbon macrotube sponges for high-performance supercapacitors, Small 17 (2021) 2004827.
    [38]
    F. Wu, J. Gao, X. Zhai, M. Xie, Y. Sun, H. Kang, Q. Tian, H. Qiu, Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors, Carbon 147 (2019) 242-251.
    [39]
    C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun, X. Chen, Y. Ma, Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors, Chem. Eng. J. 414 (2021) 128781.
    [40]
    F. Ran, X. Yang, X. Xu, S. Li, Y. Liu, L. Shao, Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor, Chem. Eng. J. 412 (2021) 128673.
    [41]
    P. Han, M. Cheng, D. Luo, W. Cui, H. Liu, J. Du, M. Wang, Y. Zhao, L. Chen, C. Zhu, J. Xu, Selective etching of C-N bonds for preparation of porous carbon with ultrahigh specific surface area and superior capacitive performance, Energy Storage Mater. 24 (2020) 486-494.
    [42]
    G. Song, L. Gai, K. Yang, X. Wang, Q. An, Z. Xiao, S. Zhai, A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications, Carbon 181 (2021) 335-347.
    [43]
    G. Li, Y. Huang, Z. Yin, H. Guo, Y. Liu, H. Cheng, Y. Wu, X. Ji, J. Wang, Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance, Energy Storage Mater. 24 (2020) 304-311.
    [44]
    Y. Sun, H. Wang, W. Wei, Y. Zheng, L. Tao, Y. Wang, M. Huang, J. Shi, Z.C. Shi, D. Mitlin, Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance, ACS Nano 15 (2021) 1652-1665.
    [45]
    D.K. Kim, S. Bong, X. Jin, K.D. Seong, M. Hwang, N.D. Kim, N.H. You, Y. Piao, ACS Appl. Mater. Interfaces 11 (2019) 1996-2005.
    [46]
    L. Miao, H. Duan, D. Zhu, Y. Lv, L. Gan, L. Li, M. Liu, Boron “gluing” nitrogen heteroatoms in a prepolymerized ionic liquid-based carbon scaffold for durable supercapacitive activity, J. Mater. Chem. A 9 (2021) 2714-2724.
    [47]
    Y. Wang, J. Xiao, H. Wang, T.C. Zhang, S. Yuan, N-doped porous carbon derived from solvent-free synthesis of cross-linked triazine polymers for simultaneously achieving CO2 capture and supercapacitors, Chem.-Eur. J. 27 (2021) 7908-7914.
    [48]
    Y. Wang, H. Wang, T.C. Zhang, S. Yuan, B. Liang, N-doped porous carbon derived from rGO-Incorporated polyphenylenediamine composites for CO2 adsorption and supercapacitors, J. Power Sources 472 (2020) 228610.
    [49]
    J. Xiao, Y. Wang, T.C. Zhang, L. Ouyang, S. Yuan, Phytic acid-induced self-assembled chitosan gel-derived N, P-co-doped porous carbon for high-performance CO2 capture and supercapacitor, J. Power Sources 517 (2022) 230727.
    [50]
    P. Sun, J. Huang, F. Xu, J. Xu, T. Lin, W. Zhao, W. Dong, F. Huang, Boron-induced nitrogen fixation in 3D carbon materials for supercapacitors, ACS Appl. Mater. Interfaces 12 (2020) 28075-28082.
    [51]
    Y. Wang, J. Xiao, H. Wang, T.C. Zhang, S. Yuan, Binary doping of nitrogen and phosphorus into porous carbon: A novel di-functional material for enhancing CO2 capture and super-capacitance, J. Mater. Sci. Technol. 99 (2022) 73-81.
    [52]
    S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors, Adv. Energy Mater. 10 (2020) 2001239.
    [53]
    Y. Wang, R. Liu, Y. Tian, Z. Sun, Z. Huang, X. Wu, B. Li, Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors, Chem. Eng. J. 384 (2020) 123263.
    [54]
    C. Huang, Q. Tang, Q. Feng, Y. Li, Y. Xu, Y. Zhang, A. Hu, S. Zhang, W. Deng, X. Chen, Achieving ultrahigh volumetric performance of graphene composite films by an outer-inner dual space utilizing strategy, J. Mater. Chem. A 8 (2020) 9661-9669.
    [55]
    J. Han, Q. Li, J. Wang, J. Ye, G. Fu, L. Zhai, Y. Zhu, Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors, J. Mater. Sci.-Mater. Electron. 29 (2018) 20991-21001.
    [56]
    C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance, J. Colloid Interface Sci. 523 (2018) 133-143.
    [57]
    T. Liu, Y. Lan, Q. Zhu, G. Du, X. Su, Z. Lin, Potassium humate carbon derived from chlorination roast quenching of municipal sludge for high-performance supercapacitor electrodes, Chem. Eng. J. 421 (2021) 129993.
    [58]
    C. Leng, K. Sun, J. Li, J. Jiang, From dead pine needles to o, n codoped activated carbons by a one-step carbonization for high rate performance supercapacitors, ACS Sustain. Chem. Eng. 5 (2017) 10474-10482.
    [59]
    C. Zhao, Y. Ding, Y. Huang, N. Li, Y. Hu, C. Zhao, Soybean root-derived N, O co-doped hierarchical porous carbon for supercapacitors, Appl. Surf. Sci. 555 (2021) 149726.
    [60]
    A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, G. Wang, Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries, Chem.-Eur. J. 23 (2017) 3683-3690.
    [61]
    M. Cao, Q. Wang, W. Cheng, S. Huan, Y. Hu, Z. Niu, G. Han, H. Cheng, G. Wang, A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin, Carbon 179 (2021) 68-79.
    [62]
    S. Gao, X. Li, L. Li, X. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation, Nano Energy 33 (2017) 334-342.
    [63]
    Z. Liu, J. Hu, F. Shen, D. Tian, M. Huang, J. He, J. Zou, L. Zhao, Y. Zeng, Trichoderma bridges waste biomass and ultra-high specific surface area carbon to achieve a high-performance supercapacitor, J. Power Sources 497 (2021) 229880.
    [64]
    M. Rana, K. Subramani, M. Sathish, U.K. Gautam, Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture, Carbon 114 (2017) 679-689.
    [65]
    H. Zhang, M. Lu, H. Wang, Y. Lyu, D. Li, S. Sun, J. Shi, W. Liu, Boosting pseudocapacitive charge storage in in situ functionalized carbons with a high surface area for high-energy asymmetric supercapacitors, Sustain. Energ. Fuels 2 (2018) 2314-2324.
    [66]
    L. Wan, J. Hu, J. Liu, M. Xie, Y. Zhang, J. Chen, C. Du, Z. Tian, Heteroatom-doped porous carbons derived from lotus pollen for supercapacitors: Comparison of three activators, J. Alloy. Compd. 859 (2021) 158390.
    [67]
    S.-W. Xu, Y.-Q. Zhao, Y.-X. Xu, Q.-H. Chen, G.-Q. Zhang, Q.-Q. Xu, D.-D. Zhao, X. Zhang, C.-L. Xu, Heteroatom doped porous carbon sheets derived from protein-rich wheat gluten for supercapacitors: The synergistic effect of pore properties and heteroatom on the electrochemical performance in different electrolytes, J. Power Sources 401 (2018) 375-385.
    [68]
    D. Zhu, Y. Wang, W. Lu, H. Zhang, Z. Song, D. Luo, L. Gan, M. Liu, D. Sun, A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes, Carbon 111 (2017) 667-674.
    [69]
    L. Borchardt, D. Leistenschneider, J. Haase, M. Dvoyashkin, Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors, Adv. Energy Mater. 8 (2018) 1800892.
    [70]
    X. Xi, D. Wu, L. Han, Y. Yu, Y. Su, W. Tang, R. Liu, Highly uniform carbon sheets with orientation-adjustable ordered mesopores, ACS Nano 12 (2018) 5436-5444.
    [71]
    C. Yang, S. Yun, J. Shi, M. Sun, N. Zafar, A. Arshad, Y. Zhang, L. Zhang, Tailoring the supercapacitive behaviors of Co/Zn-ZIF derived nanoporous carbon via incorporating transition metal species: A hybrid experimental-computational exploration, Chem. Eng. J. 419 (2021) 129636.
    [72]
    Y. Wang, J. Xiao, T. Zhang, L. Ouyang, S. Yuan, Single-step preparation of ultrasmall iron oxide-embedded carbon nanotubes on carbon cloth with excellent superhydrophilicity and enhanced supercapacitor performance, ACS Appl. Mater. Interfaces 13 (2021) 45670-45678.
    [73]
    F. Qiu, Y. Huang, C. Luo, X. Li, M. Wang, H. Cao, An acid-resistant gel polymer electrolyte based on lignocellulose of natural biomass for supercapacitors, Energy Technol. 8 (2020) 2000009.
    [74]
    X. Wang, D. Kong, Y. Zhang, B. Wang, X. Li, T. Qiu, Q. Song, J. Ning, Y. Song, L. Zhi, All-biomaterial supercapacitor derived from bacterial cellulose, Nanoscale 8 (2016) 9146-9150.
    [75]
    X. Liu, O.O. Taiwo, C. Yin, M. Ouyang, R. Chowdhury, B. Wang, H. Wang, B. Wu, N.P. Brandon, Q. Wang, S.J. Cooper, Aligned ionogel electrolytes for high-temperature supercapacitors, Adv. Sci. 6 (2019) 1801337.
    [76]
    Z. Song, H. Duan, D. Zhu, Y. Lv, W. Xiong, T. Cao, L. Li, M. Liu, L. Gan, Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte, J. Mater. Chem. A 7 (2019) 15801-15811.
    [77]
    Y. Liu, X. Qiu, X. Liu, Y. Liu, L.-Z. Fan, 3D porous binary-heteroatom doped carbon nanosheet/electrochemically exfoliated graphene hybrids for high performance flexible solid-state supercapacitors, J. Mater. Chem. A 6 (2018) 8750-8756.
    [78]
    L. Miao, X. Qian, D. Zhu, T. Chen, G. Ping, Y. Lv, W. Xiong, Y. Liu, L. Gan, M. Liu, From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes, Chin. Chem. Lett. 30 (2019) 1445-1449.
    [79]
    W.G. Moon, G.P. Kim, M. Lee, H.D. Song, J. Yi, A biodegradable gel electrolyte for use in high-performance flexible supercapacitors, ACS Appl. Mater. Interfaces 7 (2015) 3503-3511.
    [80]
    N.R. Chodankar, D.P. Dubal, A.C. Lokhande, C.D. Lokhande, Ionically conducting PVA-LiClO4 gel electrolyte for high performance flexible solid state supercapacitors, J. Colloid Interface Sci. 460 (2015) 370-376.
    [81]
    M. Sandhiya, Vivekanand, S. Suresh Balaji, M. Sathish, Na2MoO4-incorporated polymer gel electrolyte for high energy density flexible supercapacitor, ACS Appl. Energ. Mater. 3 (2020) 11368-11377.
    [82]
    Y. Lu, H. Mi, C. Ji, F. Guo, Z. Bai, Y. Liu, C. Yu, J. Qiu, Synergizing layered carbon and gel electrolyte for efficient energy storage, ACS Sustain. Chem. Eng. 8 (2020) 4207-4215.
    [83]
    Z. Li, S. Gao, H. Mi, C. Lei, C. Ji, Z. Xie, C. Yu, J. Qiu, High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte, Carbon 149 (2019) 273-280.
    [84]
    V. Chaudoy, F. Tran Van, M. Deschamps, F. Ghamouss, Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor, J. Power Sources 342 (2017) 872-878.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (245) PDF downloads(12) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return