Volume 8 Issue 3
Jul.  2023
Turn off MathJax
Article Contents
Xiaofei Wang, Shixiang Feng, Yue Wang, Yujun Zhao, Shouying Huang, Shengping Wang, Xinbin Ma. Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3. Green Energy&Environment, 2023, 8(3): 927-937. doi: 10.1016/j.gee.2021.12.004
Citation: Xiaofei Wang, Shixiang Feng, Yue Wang, Yujun Zhao, Shouying Huang, Shengping Wang, Xinbin Ma. Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3. Green Energy&Environment, 2023, 8(3): 927-937. doi: 10.1016/j.gee.2021.12.004

Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3

doi: 10.1016/j.gee.2021.12.004
  • Lignin is a renewable carbon resource to produce arenes due to its abundant aromatic structures. For the liquid-phase hydrodeoxygenation (HDO) based on metallic catalysts, the preservation of aromatic rings in lignin or its derivatives remains a challenge. Herein, we synthesized Mn-doped Cu/Al2O3 catalysts from layered double hydroxides (LDHs) for liquid-phase HDO of lignin-derived anisole. Mn doping significantly enhanced the selective deoxygenation of anisole to arenes and inhibited the saturated hydrogenation on Cu/Al2O3. With Mn doping increasing, the surface of Cu particles was modified with MnOx along with enhanced generation of oxygen vacancies (Ov). The evolution of active sites structure led to a controllable adsorption geometry of anisole, which was beneficial for increasing arenes selectivity. As a result, the arenes selectivity obtained on 4Cu/8Mn4AlOx was increased to be more than 6 folds of that value on 4Cu/4Al2O3 over the synergistic sites between metal Cu and Ov generated on MnOx.

     

  • loading
  • [1]
    A. D. Sutton, F. D. Waldie, R. Wu, M. Schlaf, J. C. Gordon, Nat. Chem. 5 (2013) 428-432.
    [2]
    S. Crossley, J. Faria, M. Shen, D. E. Resasco, Science 327 (2010) 68-72.
    [3]
    W. Luo, W. Cao, P. C. A. Bruijnincx, L. Lin, A. Wang, T. Zhang, Green Chem. 21 (2019) 3744-3768.
    [4]
    C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev. 115 (2015) 11559-11624.
    [5]
    Z. Luo, S. Qin, S. Chen, Y. Hui, C. Zhao, Green Chem. 22 (2020) 1842-1850.
    [6]
    D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev. 41 (2012) 8075-8098.
    [7]
    A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, Science 344 (2014) 6185.
    [8]
    D. Van, W. Schutyser, R. Vanholme, T. Driessen, S. F. Koelewijn, T. Renders, B. D. Meester, W. Huijgen, W. Dehaen, C. M. Courtin, Energy Environ. Sci. 8 (2015) 1748-1763.
    [9]
    T. Ren, S. You, Z. Zhang, Y. Wang, W. Qi, R. Su, Z. He, Green Chem. 23 (2021) 1648-1657.
    [10]
    M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, M. R. Rahimpour, Energy Environ. Sci. 7 (2014) 103-129.
    [11]
    J. Zhang, J. Sun, L. Kovarik, M. H. Engelhard, L. Du, B. Sudduth, H. Li, Y. Wang, Chem. Sci. 11 (2020) 5874-5880.
    [12]
    J. Resasco, F. Yang, T. Mou, B. Wang, P. Christopher, D. E. Resasco, ACS Catal. 10 (2019) 595-603.
    [13]
    J. Zhang, J. Sun, Y. Wang, Green Chem. 22 (2020) 1072-1098.
    [14]
    M. Shetty, E. M. Anderson, W. H. Green, Y. Roman-Leshkov, J. Catal. 376 (2019) 248-257.
    [15]
    C. J. Chen, W. S. Lee, A. Bhan, Appl. Catal. A Gen. 510 (2016) 42-48.
    [16]
    Q. Lu, C. J. Chen, W. Luc, J. G. Chen, A. Bhan, F. Jiao, ACS Catalysis 6 (2016) 3506-3514.
    [17]
    X. Wang, M. Arai, Q. Wu, C. Zhang, F. Zhao, Green Chem. 22 (2020) 8140-8168.
    [18]
    M. P. Pandey, S. K. Chang, Chem. Eng. Technol. 34 (2011) 29-41.
    [19]
    A. A. Smirnov, Z. Geng, S. A. Khromova, S. G. Zavarukhin, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, D. Y. Ermakov, V. A. Yakovlev, J. Catal. 354 (2017) 61-77.
    [20]
    Q. Chen, C. Cai, X. Zhang, Q. Zhang, L. Chen, Y. Li, C. Wang, L. Ma, ACS Sustainable Chem. Eng. 8 (2020) 9335-9345.
    [21]
    G. H. Gu, C. A. Mullen, A. A. Boateng, D. G. Vlachos, ACS Catal. 6 (2016) 3047-3055.
    [22]
    R. C. Nelson, B. Baek, P. Ruiz, B. Goundie, A. Brooks, M. C. Wheeler, B. G. Frederick, L. C. Grabow, R. N. Austin, ACS Catal. 5 (2015) 6509-6523.
    [23]
    F. Anaya, L. Zhang, Q. Tan, D. E. Resasco, J. Catal. 328 (2015) 173-185.
    [24]
    J. Sun, A. M. Karim, H. Zhang, L. Kovarik, X. S. Li, A. J. Hensley, J. S. Mcewen, Y. Wang, J. Catal. 306 (2013) 47-57.
    [25]
    P. Sirous-Rezaei, J. Jae, K. Cho, C. H. Ko, S. C. Jung, Y. K. Park, Chem. Eng. J. 377 (2019) 120121.
    [26]
    A. M. Robinson, J. E. Hensley, J. W. Medlin, ACS Catal. 6 (2016) 5026-5043.
    [27]
    T. N. Phan, C. H. Ko, Catal. Today 303 (2018) 219-226.
    [28]
    G. Zhou, H. Wang, J. Tian, Y. Pei, K. Fan, M. Qiao, B. Sun, B. Zong, ChemCatChem 10 (2018) 1184-1191.
    [29]
    Y. Zheng, N. Zhao, J. Chen, Appl. Catal. B Environ. 250 (2019) 280-291.
    [30]
    B. Chen, F. Zaera, J. Phys. Chem. C 125 (2021) 14709-14717.
    [31]
    Y. Cao, B. Chen, J. Guerrero-Sanchez, I. Lee, X. Zhou, N. Takeuchi, F. Zaera, ACS Catal. 9 (2019), 9150-9157.
    [32]
    Y. Zhao, S. Li, Y. Wang, B. Shan, J. Zhang, S. Wang, X. Ma, Chem. Eng. J. 313 (2017) 759-768.
    [33]
    Y. Wang, Y. Shen, Y. Zhao, J. Lv, S. Wang, X. Ma, ACS Catal. 5 (2015) 6200-6208.
    [34]
    Z. Zhang, Q. Yang, H. Chen, K. Chen, X. Lu, P. Ouyang, J. Fu, J. G. Chen, Green Chem. 20 (2018), 197-205.
    [35]
    A. Bjelic, M. Grilc, M. Hus, B. Likozar, Chem. Eng. J. 359 (2019) 305-320.
    [36]
    Q. Hu, L. Yang, G. Fan, F. Li, J. Catal. 340 (2016) 184-195.
    [37]
    A. Reddy, C. Gopinath, S. Chilukuri, J. Catal. 243 (2006) 278-291.
    [38]
    M. Morales, B. Barbero, L. Cadus, Appl. Catal. B Environ. 67 (2006) 229-236.
    [39]
    D. Zhao, C. Wang, F. Yu, Y. Shi, P. Cao, J. Dan, K. Chen, Y. Lv, X. Guo, B. Dai, Nanomaterials 8 (2018) 620.
    [40]
    S. Jiang, N. Ji, X. Diao, H. Li, Y. Rong, Y. Lei, Z. Yu, ChemSusChem 14 (2021) 4377-4396.
    [41]
    W. Yang, Y. Zhu, F. You, L. Yan, Y. Ma, C. Lu, P. Gao, Q. Hao, W. Li, Appl. Catal. B Environ. 233 (2018) 184-193.
    [42]
    T. Prasomsri, M. Shetty, K. Murugappan, Y. Roman-Leshkov, Energy Environ. Sci. 7 (2014) 2660-2669.
    [43]
    T. Machej, E. M. Serwicka, M. Zimowska, R. Dula, A. Michalik-Zym, B. Napruszewska, W. Rojek, R. Socha, Appl. Catal. A Gen. 474 (2014) 87-94.
    [44]
    L. He, Y. Huang, A. Wang, X. Wang, X. Chen, Angew. Chem. Int. Ed. 129 (2017) 1249-1253.
    [45]
    S. Zhang, G. Fan, F. Li, Green Chem. 15 (2013) 2389-2393.
    [46]
    J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal. 251 (2007) 7-20.
    [47]
    X. Xiong, Z. Cai, D. Zhou, G. Zhang, D. Xue, Sci. China Mater. 61 (2018) 939-947.
    [48]
    Y. Zhao, G. Chen, T. Bian, C. Zhou, G. I. N. Waterhourse, L. Wu, L. J. Smith, D. O’Hare, T. Zhang, Adv. Mater. 27 (2015) 7824-7831.
    [49]
    P. Wei, M. Bieringer, L. Cranswick, A. Petric, J. Mater. Sci. 45 (2010) 1056-1064.
    [50]
    Q. Yan, S. Chen, L. Qiu, Y. Gao, D. O'Hare, Q. Wang, Dalton Trans. 47 (2018), 2992-3004.
    [51]
    H. Wang, Z. Qu, H. Xie, N. Maeda, L. Miao, Z. Wang, J. Catal. 338 (2016) 56-67.
    [52]
    Y. Lou, J. Ma, X. Cao, L. Wang, Q. Dai, Z. Zhao, Y. Cai, W. Zhan, Y. Guo, P. Hu, ACS Catal. 4 (2014) 4143-4152.
    [53]
    L. Zhu, J. Wang, S. Rong, H. Wang, P. Zhang, Appl. Catal. B Environ. 211 (2017) 212-221.
    [54]
    I. G. Mckendry, A. C. Thenuwara, S. L. Shumlas, H. Peng, Y.V.Aulin, P. R. Chinnam, E. Borguet, D. R. Strongin, M. J. Zdilla, Inorg. Chem. 57 (2018) 557-564.
    [55]
    Y.B. Huang, L. Yan, M. Y. Chen, Q. Guo, Y. Fu, Green Chem. 17 (2015) 3010-3017.
    [56]
    K. Krishna, A. Bueno-Lopez, M. Makkee, J. A. Moulijn, Appl. Catal. B Environ. 75 (2007) 189-200.
    [57]
    S. Rong, K. Li, P. Zhang, F. Liu, J. Zhang, Catal. Sci. Technol. 8 (2018) 1799-1812.
    [58]
    F. Yang, N. J. Libretto, M. R. Komarneni, W. Zhou, D. E. Resasco, ACS Catal. 9 (2019) 7791-7800.
    [59]
    T. Chen, O. Kwon, R. Huang, C. Lin, J. M. Vohs, J. Catal. 400 (2021) 294-300.
    [60]
    W. Cong, A. V. Mironenko, R. Abhishek, T. Chen, X. Mao, P.Ashwin, D.G. Vlachos, R. J. Gorte, J. M. Vohs, ACS Catal. 8 (2018) 7749-7759.
    [61]
    P. M. De Souza, R. C. Rabelo-Neto, L. E. P. Borges, G. Jacobs, B. H. Davis, T. Sooknoi, D. E. Resasco, F. B. Noronha, ACS Catal. 5 (2015) 1318-1329.
    [62]
    T. Lai, C. Lee, K. Wu, Y. Shu, C. Wang, Appl. Catal. B Environ. 68 (2006) 147-153.
    [63]
    P. M. De Souza, R.C.Rabelo-Neto, L. E. P. Borges, G. Jacobs, B. H. Davis, U. M. Graham, D. E. Resasco, F. B. Noronha, ACS Catal. 5 (2015) 7385-7398.
    [64]
    A. Popov, E. Kondratieva, J. M. Goupil, L. Mariey, P. Bazin, J. P. Gilson, A. Travert, F. Mauge, J. Phys. Chem. C 114 (2010) 15661-15670.
    [65]
    S. Mo, Q. Zhang, J. Li, Y. Sun, Q. Ren, S. Zou, Q. Zhang, J. Lu, M. Fu, D. Mo, J. Wu, H. Huang, D. Ye, Appl. Catal. B Environ. 264 (2020) 118464.
    [66]
    G. S. Foo, A. K. Rogers, M. M. Yung, C. Sievers, ACS Catal. 6 (2016) 1292-1307.
    [67]
    S. Xing, Y. Liu, X. Liu, M. Li, J. Fu, P. Liu, P. Lv, Z. Wang, Appl. Catal. B Environ. 269 (2020) 118718.
    [68]
    S. M. Schimming, O. D. LaMont, M. Konig, A. K. Rogers, A. D. D'Amico, M. M. Yung, C. Sievers, ChemSusChem 8 (2015) 2073-2083.
    [69]
    I. B. D. De Castro, I. Graca, L. Rodriguez-Garcia, M. Kennema, R. Rinaldi, F. Meemken, Catal. Sci. Technol. 8 (2018) 3107-3114.
    [70]
    F. J. Liu, G. H. Liu, K.Gasem, B. Xu, X. Y. Wei, Appl. Energy 264 (2020) 114739.
    [71]
    J. Zhang, B. Wang, E. Nikolla, J. W. Medlin, Angew. Chem. Int. Ed. 129 (2017) 6694-6698.
    [72]
    F. Yang, D. Liu, Y. Zhao, H. Wang, J. Han, Q. Ge, X. Zhu, ACS Catal. 8 (2018) 1672-1682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (218) PDF downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return